
Statements and Variables

Lecture 01

Started from the Bottom

Please open pollev.com/comp110 and respond to the opening
poll question! Not registered? Do so before next week!

Getting Started Open House Friday 12p-5p

• Run into issues getting software installed?

• Can't run the code coming up in today's lecture?

• Come by the Getting Started Open House!

• TOMORROW: Sitterson 008 from 12pm to 5pm!

2

Review Sessions

• Lecture-format review sessions will run Wednesdays
• Time and Location TBA next week

• Small Group Review Sessions will cover the same material as Lecture-
format and run Thursdays & Fridays from 2-6pm starting next week.
• Location TBA
• No appointments needed. Come on in!

• These are for reviewing general concepts and questions.

• For help with Problem Sets and Worksheets use Office Hours…

3

Office Hours Check-in Process

• Regular Office Hours begin Monday at 10am through 8pm!

• You must "check-in" to get help in Office Hours… it's like calling an
Uber

• Let's walk through the process…

4

Office Hours Check-in Process

Click Here!

Click Here!

Office Hours Check-in Process

You can see how many people are currently waiting to
be helped and currently being helped ahead of you.

Select One!

Office Hours Check-in Process

Office Hours Check-in Process

Fill In

IMPORTANT: You must
demonstrate effort
and thought in these
fields. If you do not,
the TAs are instructed
to cancel your request
so you can try again.

Office Hours Check-in Process

Office Hours Check-in Process

Office Hours Check-in Process – TA Feedback

Like AirBnB & Uber: TA Feedback is 2-way

TAs will asses the appointment, as well:

1. Did you come to office hours prepared and able to demonstrate effort?
• Come in ready to describe what you have tried so far!

2. Were you respectful and genuinely engaged in learning?
• Don't come just looking for an answer. This strategy will bite you on exams!

3. Are we concerned over your progress in the course?

Office Hours Check-in Process – Waiting Period

Office Hours

• When other students are waiting, meetings are for up to 15 minutes
• You can see how many people are currently waiting for help.

• Come before due dates!

• Last semester, the average wait time was less than five minutes
• Wait times grow longer as deadlines approach.

• Start early!

• TAs are here to help you learn and work through misunderstanding
• They are not here to tell you what to do nor give you answers

14

Use Office Hours!!!!! … with Moderation

• Overdosing on "office hours" leads to bad outcomes.

• Median student used office hours for one to two appointments / week.

• The max student had 96 appointments in the Spring.
That's an average of 6 per week for 24 hours spent in office hours!
• Did not enjoy the course (understandably!)

• Did not do well in the course (understandably!)

• "Living" in office hours will be detrimental to your performance on exams.

And now, back to Computer Science…

Fundamental Components of a Computer

1. Memory
• Storage space for data.
• Millions to billions of tiny spaces for storing numbers, letters, etc.

2. Processor (Central Processing Unit)
• Has an instruction set that determines its capabilities.
• Far simpler and fewer built-in capabilities than you'd think!

• Add, subtract, load, store, jump, compare, etc.

• Can retrieve and store values to and from memory.

3. Program
• A sequence of instructions the processor follows one-by-one.
• As a programmers, you are authoring these instructions!

110

"h"

"e"

"l"

"l"

"o"

true

Memory

..
.

..
.

What is a program?

• Computers run programs

• A program is a series of instructions that load, change,
and store data in memory

• Computer chips understand machine code instructions in
a binary code format
• It’s very painful for humans to author directly

• So humans can write machine-level code in a slightly
nicer language called assembly code that is compiled, or
translated, into machine code.
• It turns out assembly is painful to work with, too.
• You can work with it in COMP411.

18

What is a programming language?

• Most programmers use high-level programming languages
• First programming language invented in the 1952 by Grace Hopper

• Programming languages make reading and writing programs
much more pleasant

• Like written languages, each has syntax and grammar

• Programs are compiled into or interpreted as machine code
• Through a series of translations your TypeScript code becomes

machine code instructions
• We will not get into the details of this in COMP110
• In COMP520 you can build your own compiler from scratch!

19

Grace Hopper

Lecture Readiness - "Pulling" Class Materials

• When you come into lecture each day, the routine we'll get into is:

1. Open PollEv.com/comp110

2. Open VSCode and its Integrated Terminal Tab

3. In the Integrated Terminal, first run: npm run pull
• This downloads the latest lecture materials.

4. Then run: npm start
• This starts the development compiler and server allowing us to see the output of our code.

COMP110's Source Code Structure

• The folder "src" stands for "Source Code"

• Each subfolder groups related "apps"
• Each Lecture and Problem Set will have its own folder

• You can create your own subfolders for tinkering around

• Each "app" is a TypeScript file (.ts extension) that ends in -app
• For example: variables-app.ts, hello-world-app.ts

• You can create a new app by right clicking in a subfolder, selecting "New File",
and naming the file something that ends in "-app.ts"

Follow-along: the classical “hello, world”

22

// Code Comments (1/2)

• We can add notes for ourselves in code using comments

• The computer ignores comments when running your program

• Single line comments begin with a //
// This is a single line comment

• Multi-line comments are surrounded by an opening /* and closing */
/* This

is
a multi-line comment

*/

• Comments are also useful for ignoring code you've written without deleting it.

// Code Comments (2/2)

• In the early days of programming, we recommend writing comments
liberally in your code to explaining what your program is doing in
English.

• Comments are free so use them liberally.

• Comments are the easiest way to "take notes" when we are working
on examples in lecture.

Statements (1/2)

• Statements are equivalent to an
English sentence

• Statements usually end with a
semi-colon ;
• Like sentences end with a period!

• Each statement is an instruction
you are giving to the computer.

print("hello, world");

That’s a statement!

“Print ‘hello, world’ to the screen.”

25

Statements (2/2)

• The computer will not carry out
our instructions until we run the
code
• When you write programs, it is like you

are writing a recipe down

• When you run a programs, the computer
is like the chef following your recipe

• Before the first statement runs,
your program is a barren, empty
world
• Your code builds up its own little world

piece-by-piece

print("hello, world");

That’s a statement!

“Print ‘hello, world’ to the screen.”

26

Data Types

• Every value, or piece of data, in TypeScript has a specific type

• 3 kinds of simple data types
1. Numerical

2. Textual

3. Boolean (true or false)

• 2 kinds of composite data types composed of other data types
1. Arrays are a series of values of a single type

2. Objects can hold many values of many different types

27

Let's print some literal values!
• You should write: print();

• Place your literal values within the blank space

• // number literals

10

3.14

• // string literal

"one"

"hello"

• // boolean literals

true

false
28

// String literal
print("These are literal values being printed out");

// number literals
print(20);
print(2.0);

// boolean literals
print(true);
print(false);

Numerical Type - number

• Literal examples: 0, 1, 2, 3.14, 110.110

• We tend to use numerical data in two ways:
• As integers, which are useful for counting

• As decimals, which are useful in simulations, modeling, and so on

• Lower-level programming languages like Java and C have specific types for integer (i.e. int)
and decimal data (i.e. double). In TypeScript, it's just number.

Textual Type - string

• string is short for "string of characters"

• Literal examples: "abc", "123", "~() @#z2"

• Useful for all textual data.

Logical Type - boolean

• Literal examples: true, false

• A boolean can only be one of two possible values,
either true or false.

Block Statements
• A block is a special kind of statement that groups multiple, related statements.

• Blocks are enclosing curly braces that "contain" its statements.

{
// This is a block statement
print("Statement one");
print("Statement two");

}

• Anywhere you can write a statement, you can also write a block statement.

• Important formatting rule: each statement inside of a block is indented!

• Blocks do not end with a semicolon after the closing curly brace.

How do we work with values in memory?

• If a program is "a series of instructions that load, change,
and store data in memory", then how do we work with
memory?

• With variables!

• In programs, variables are used to load, change, and store
values to and from memory.

• Every variable has a name and holds a specific data type.

110

compCourseNumber

number

Variable Declaration Syntax (1/3)

• When you declare a variable, you are proclaiming...
“henceforth, within the nearest surrounding set of curly braces, the
identifier <insert name> shall refer a(n) <insert type> value stored in
memory”

let compCourseNumber: number;
• “Let compCourseNumber refer to a number value stored in memory.”

• General form:

let <name>: <type>;

• The type can be: number, string, boolean (and more to come)
35

Variable Declaration Semantics (2/3)

36

When this statement runs:

let compCourseNumber: number;

You are reserving a space in your computer’s
memory that can store a number value.

When you later refer to the word
compCourseNumber, the program knows
which exact location in memory it reserved.

Using this name, you can store, access, and
reassign data in memory!

Memory

..
.

..
.

compCourseNumber

Variable Declaration Rules (3/3)
Variable names must be a single word, begin with a letter*, and contain only letters,
numbers, and underscores.

In COMP110, we use "camel casing" for multiword names:

thisIsACamelCasedVariableName

You cannot refer to a variable until after its declaration.

Variables declared in block statements are only accessible inside of the block declared.

You cannot declare the same variable name twice in the same curly brace block.
37

Variable Assignment Syntax (1/3)

• The assignment statement stores a value in a variable

compCourseNumber = 110;

• “compCourseNumber is assigned a value of 110”

• “compCourseNumber takes the value of 110”

• “compCourseNumber is now 110”

• Notice: None of these readings uses the word “equals”!

• General form:

<name> = <value>;

38

Variable Assignment Semantics (2/3)

39

When this line of code runs:

compCourseNumber = 110;

The value 110 is stored in the memory space
reserved for the compCourseNumber variable.

Later, if the following line ran:

compCourseNumber = 401;

The value 401 is stored in the memory space it
reserved for the compCourseNumber variable.

Assignment is not equality!

Memory

..
.

..
.

compCourseNumber

11040`

Variable Assignment Rules (3/3)

• The value’s type must match the variable’s declared type

• Variable Assignment Rules:
• The first time you assign a value to a variable has a special name: initialization

• It is very important to always initialize your variables
• In other words, always assign a starting value to your variables

• A variable’s value can change as the program runs
• Just assign a another value to the same variable!

• After an assignment statement runs, when subsequent lines of code run the variable will have
the most recently assigned value.

40

Variable Access – "Read" - Syntax (1/3)

• After you have declared a variable and initialized it by assigning a starting value…

• You can access (“read”, “load”) a variable’s value from memory by its name

print(compCourseNumber);

• “Read the last value assigned to compCourseNumber and print it out.”

Variable Access – "Read" - Example (2/3)
• There are a many places where you can use variable access statements in code.

• For example, in assignment statements:

compCourseNumber = compCourseNumber + 291;

“compCourseNumber is now the last value assigned to compCourseNumber plus 291.”

Steps:

1. current value of compCourseNumber is read

2. 291 is added to it

3. Result is assigned to compCourseNumber

Variable Access – "Read" - Rules (3/3)

• Variable Scope: Variables declared inside a block are only accessible in the same block.

{

let x: number = 0;

print(x); // OK!

{

print(x); // OK!

}

}

print(x); // ERROR! x does not exist outside of its block

Variable Assignment is not Equality

44

compCourseNumber’s value in memory

1. undeclared

2. uninitialized

3. 110

4. 110

5. 110

6. 401

7. 401

• Imagine the following program:

1. print(“Variable Assignment”);

2. let compCourseNumber: number;

3. compCourseNumber = 110;

4. print(compCourseNumber);

5. // Some time passes…

6. compCourseNumber = compCourseNumber + 291;

7. print(compCourseNumber);

Couldn't get code running today?

• Come to the open house tomorrow from 12p-5p!

• Sitterson 008!

Problem Set 0 – A Card for Someone Special

• Make a digital card in code for your Mom, Dad, Lover, Professor, whoever
(and send it to them!)

• You will receive an e-mail from me over the weekend with instructions to
get started on Problem Set 0.

• It will be due next Friday by 11:59pm.
• We will go over hand-in instructions on Tuesday

• Very short, simple problem set to make sure everyone is setup!

