
COMP110 Final Study Guide

Key terms
1. OOP
--- definition:
 fields, methods, constructors
 this
--- usage

main method (constructing objects, method calls, change of fields)
parameters vs arguments
local variables vs fields
expressions (method chaining & nested methods)
null

2. Other Basics

datatypes (primitive, String, objects)
reference and primitive types
operators (arithmetic, boolean, concatenation)
conditionals
2D arrays & nested loops (new!)
arrays
loops (for & while)
interfaces
recursion
ADT (List, Map)
simple insertion sort and binary search

1. T/F:
a. A condition is required for an else statement.
b. A condition is required for an else-if statement.
c. Parameters is to method calls as arguments is to method declarations.
d. == is to comparison as = is to assignment.
e. Not every element in the 2D array has to be the same variable type.
f. Array indices must be of type int and can be a variable or expression.
g. The correct way to get the width and height of a 2D array called arr is arr.length and arr.height.
h. The correct way to get the width and height of a 2D array called arr is arr.length and arr[0].length.
i. A constructor of a class always has the same name as the class name.
j. A constructor has no return type.

2. Does each the following values evaluate to true or false?
 true && true true && false false && false
 true || false false || false
 (“a”+1+2).equals(“a3”) 3/4 == .75 || 3%4 == 1

3. Read the code below, then answer the question.
for (int i = 4; i >= 1; i--) {

 if (i == 10) {

 System.out.println(“A”);

 } else if (i == 2) {

 System.out.println(“B”);

 } else if (i >= 4) {

 System.out.println(“C”);

 } else {

 System.out.println(“D”);

 }

 System.out.println(i);

}

What is the output of the code on the right?
Write out one line per box (use as many boxes
as needed).

4. Correct the error(s) in each snippet of code (mistakes in logic and implementation are not errors in these
exercises). To the right, explain the error(s) and name the concept(s) emphasized for each snippet of code.

a

public int sum(int[] arr) {

 for (int a = 0; a < arr.length; a++) {
 int sum = 0;
 sum = sum + arr[a];
 }

 return sum;
}

b

public boolean compare(String[] arr, List<String> list) {
 if (arr.length != list.length) {
 return false;
 } else {
 int i = 0;
 for (String s : list) {
 if (s != arr[i]) {
 return false;
 }
 i++;
 }
 }

 return true;
}

c

Map<String, Double> map = new HashMap<String, Double>();
map.add(“Helen”, 10.0);
map.add(“Dorian”, 6.77);
map.remove(6.77);

	
	

5.	A	2D	array	is	a	1D	array	whose	elements	are	also	1D	arrays.	Bear	with	that	and	try	to	explore	this	further	
with	the	following	3	questions.

a.	Declaration	and	Instantiation	
Sandy	is	a	diligent	squirrel	who	has	collected	a	number	of	acorns	and	seeds	for	the	approaching	

winter.	Much	to	her	delight,	Sandy	just	found	a	rectangular	lawn	where	she	can	bury	a	certain	amount	
of	food	in	each	slot	of	the	lawn.	Go	ahead	and	construct	a	2D	array	for	this	rectangular	lawn	as	Sandy’s	
food	storage	map	in	the	constructor	of	the	following	class	Squirrel.

public class Squirrel{
 private double[][] lawn; //The 2D array of type double has been declared

 public Squirrel(int row, int col, double food){
/*The number of rows and columns of the lawn and the total amount of grains
Sandy has collected as winter food were given as parameters
*/

/*(1): Instantiate the array lawn as Sandy’s food storage map*/

/*(2): Use a loop to fill in the elements of the lawn where each slot
contains the same amount of food
*/

}
}

	
	
	
	
	
	
	
	

b.	Using	2D	array	with	a	while	loop	
Last	night,	a	powerful	storm	slammed	Chapel	Hill	and	some	slots	of	Sandy’s	food	storage	lawn	

were	damaged	unfortunately.	So,	the	amount	of	food	in	each	remaining	slot	decreased	due	to	the	
flood.	As	a	warmhearted	COMP	110	student,	you	want	to	help	Sandy	calculate	how	much	food	in	total	
was	left	under	the	lawn	so	that	Sandy	can	better	prepare	for	the	next	round	of	grain	collecting.	Here	is	
an	illustration	for	the	before	and	after	storm	scenario.	

Before	Storm:	3*4	Rectangle	Lawn
3.2	|	3.2	|	3.2	|	3.2
3.2	|	3.2	|	3.2	|	3.2
3.2	|	3.2	|	3.2	|	3.2

Total	amount	of	food=38.4	

After	Storm:	Left	Lawn
																							1.2	|	0.0	|	0.0	|	0.0
																							1.0	|	2.2	|	3.2	|	1.1
																							2.7	|	3.2	|	0.0	|	2.1

Total	amount	of	food=16.7

Now,	a	2D	array	named	leftLawn	of	the	element	type	double	is	given	as	the	parameter	of	the	method	
afterStorm	that	returns	a	double	indicating	the	total	amount	of	food	left	under	the	lawn.	Each	element	of	
leftLawn	represents	the	amount	of	food	left	at	that	position.	Go	ahead	and	finish	the	afterStorm	method.	

public class Squirrel{
 private double[][] lawn;

 Public Squirrel(){
 /****as in question a ****/
 }

 public double afterStorm(double[][] leftLawn){
 double totalFood=0;

 }
}

	

6. This is broad practice in object-oriented programming (OOP), and it uses several concepts
you’ve learned throughout the semester. You will implement classes and an interface that
represent customers and a brand new pizza restaurant on Franklin Street, then use them in a main
method - all from scratch. You can imagine how a program like this might be useful for a
company’s operations management. Try to do this without the help of Eclipse!
a. Write a class called Customer that declares the following fields, constructor, and methods:
A. Fields (name; visibility; type; description):

1. _funds; private; double; dollars to spend
2. _hunger; private; double; hunger should range from 0.0 to 1.0

B. Constructor (parameters; description):
1. double funds; double hunger; initializes fields and corrects _hunger to be

within the range 0.0 to 1.0 if the parameter hunger is out of range
C. Methods (name; visibility; return type; parameters; description):

1. eat; public; boolean; double amount; if _hunger is greater than 0.0, lowers
_hunger by the amount of food in the parameter and returns true, returns
false otherwise to signify customer is “full”

2. spend; public; boolean; double amount; lowers _funds by the amount spent
in the parameter ONLY if doing so will not result in negative _funds, returns
true if money is spent, returns false otherwise

b. Write an interface called Restaurant that declares the following public methods:
D. Methods (name; return type; parameters):

1. serveGuests; void; none
c. Write a Buffet class that implements the Restaurant interface above:
E. Fields (name; type; visibility; description):

1. _guestList; List<Customer>; private; list of guests who’ve paid to eat
F. Constructor (parameters; description):

1. none; initialize _guestList to a new empty ArrayList that holds Customers
G. Methods (name; visibility; return type; parameters; description)

1. addGuest; public; void; Customer guest; have the guest spend 16.0 then
add guest to _guestList only if 16.0 was successfully spent

2. removeGuest; public; void; Customer guest; remove guest from _guestList -
hint: to do this, use the indexOf and remove methods from the List interface

3. serveGuests; (see details in Restaurant interface); while there are guests
present, use a for-each loop to go through the guests and have each eat 0.3
in food, and if any appear full, remove that guest from the guest list

d. Write a class called Runner that includes a main method. In the main method, perform the
following actions:
H. Declare and instantiate a Restaurant using the Buffet class. Call it “pizzaCorner.”
I. Declare and instantiate three Customer objects with appropriate funds and hunger levels of
your choosing - here are suggested variable names:

1. “undergrad”
2. “grad”
3. “prof”

J. Add the Customer objects to pizzaCorner’s guestList. Will all be added successfully?

K. Have pizzaCorner serve the guests.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
7.	Given	the	class	below,	answer	the	questions.	

public class ClassA {
 private int _a;
 private double _b;
 private String _c;

 public ClassA(int a, double b, String c) {
 _a = a;
 _b = b;
 _c = c;
 }

 public double getA() {
 return a;
 }

 public void foo(String s) {
 _c = _c + s;
 }

 public int addAll(int[][] nums) {
 // implement the method below

 }
}

(a) Circle the constructor of the class.

(b)	Method	getA	(in	bold)	is	implemented	incorrectly.	Fix	the	error(s).	

(c) Implement the addAll method, such that the method returns the sum of all values in nums.

(d) Circle the correct implementation for each line of code in the main method below.

public static void main(String[] args) {

ClassA a = ClassA(1, 2.0, “.”); ClassA a = new ClassA(1, 2.0, “.”);
String str = “c”; String str = ‘c’;
a.foo(); a.foo(str);
getA(); a.getA();
int[][] ints = new int[][]; int[][] ints = new int[3][5];
ints[2][2] = 8; ints.set(2,2,8);
System.out.println(ints[1][1]); System.out.println(ints.get(1,1));
System.out.println(ints.length); System.out.println(ints.size());
int[][] out = a.addAll(ints); int out = a.addAll(ints);
System.out.println(out); System.out.println(int out);

}
Then explain why each of the other choice is wrong:

(e) For the main method code in (d), suppose we set every element in ints to be 8. What will be the printed output?

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

8.	In	this	problem,	we’ll	be	modeling	the	Conway's	Game	of	Life	simulation.	The	universe	of	the	Game	of	
Life	is	a	two-dimensional	grid	containing	cells,	which	can	be	either	alive	or	dead.	Each	cell	interacts	with	its	
eight	neighbors	that	are	adjacent	to	it	horizontally,	vertically	and	diagonally.
a.	Here	is	the	definition	of	the	Cell	method.	Complete	the	copy	method	such	that	it	returns	a	new	Cell	with	
the	same	state.	

public class Cell {
 boolean _isAlive;
 public Cell(boolean isAlive) {
 _isAlive = isAlive;
 }

 public boolean isAlive() {
 return _isAlive;
 }

 public void dead() {
 _isAlive = false;
 }

 public void alive() {
 _isAlive = true;
 }

 public Cell copy() {
 // 1

 }
}

	
	
	
	
	
	
	
	
	
	
	
	

The	following	class	contains	the	grid	containing	the	cells.	

public class GameOfLife {
 Cell[][] _cells;
 public GameOfLife(Cell[][] cells) {
 _cells = cells;
 }

 public int getWidth() { … }
 public int getHeight() { … }
 public Cell getCell(int x, int y) {...}
 public Cell[][] copy() { … }
 public int getLiveNeighbourCount(int x, int y) { … }
 public boolean shouldLive(int x, int y) { … }
 public void nextState() {...}

}

b.	Complete	the	getWidth	method	so	that	it	returns	the	width	of	the	grid.	

 public int getWidth() {

 }

c.	Complete	the	getHeight	method	so	that	it	returns	the	height	of	the	grid.	

 public int getHeight() {

 }

d.	Complete	the	getCell	method	so	that	it	returns	the	Cell	at	the	position	(x,	y).	

 public Cell getCell(int x, int y) {

 }

	
	
	
	
	
	
	
	
	

e.	Complete	the	copy	method,	which	copies	the	current	grid	of	cells	to	a	new	grid	and	returns	that	copy.	

 public Cell[][] copy() {
 // 4

 }

f.	Complete	the	getLiveNeighbourCount	method,	which	returns	the	number	of	neighboring	cells	that	are	
alive.	Currently	the	for	loop	iterates	through	all	8	neighboring	cells	as	well	as	the	cell	itself.	You	will	need	to	
check	whether	each	(i,	j)	coordinates	is	valid	(i.e.	not	out	of	index	and	not	equal	to	(x,y))	and	update	the	
count	if	you	see	a	cell	that	is	alive.	

 public int getLiveNeighbourCount(int x, int y) {
 int count = 0;
 for (int i = x - 1; i <= x + 1; i++) {
 for (int j = y - 1; j <= y + 1; j++) {

 }
 }

 return count;
 }

7. Complete	the	shouldLive	method.	If	a	cell	is	currently	alive,	then	it	should	live	if	it	has	2	or	3	alive	
neighbors.	If	the	cell	is	currently	dead,	it	should	live	if	it	has	exactly	3	alive	neighbors.	 	

 public boolean shouldLive(int x, int y) {

 }

8. Complete	the	nextState	method,	which	simulates	a	step	in	time.	Iterate	through	all	of	the	cells	and	
update	its	state	using	the	alive	and	dead	methods	defined	in	Cell.	In	the	actual	game,	all	of	the	cells	
transition	to	their	next	state	spontaneously.	Be	sure	to	create	a	copy	of	the	grid	and	modify	that	copy,	since	
we	are	simulating	all	of	the	updates	happening	at	once.	

 public void nextState() {

 }

}

9. Calculate the value of the variable or expression indicated.
a. What is the value of the variable d after the following code executes?
 List<Integer> a = new ArrayList<Integer>();
 a.add(1);
 a.add(2);
 a.add(3);
 List<Integer> b = new ArrayList<Integer>();
 b.add(4);
 b.add(5);
 b.add(6);
 List<Integer> c = new ArrayList<Integer>();
 c.add(a.get(0));
 c.add(b.get(1));
 c.add(a.get(2));
 b = a;
 a = c;
 c = b;
 int d = a.get(0) + b.get(1) + c.get(2);

b. What is the value of bar after the code below executes?

int foo = 30;
int bar = 15;
if (foo < 90) {
 bar += 10;
 foo *= 3;
} else if (foo < 80) {
 bar += 5;
} else if (foo > 70) {
 bar -= 5;
}

c. Given the following method definition of foo:

 public int foo(int a, int b) {
 if (b < a) {
 return foo(b, a);
 }
 if ((b / a) * a == b) {
 return a;
 }
 return foo (a, b - a);

}
 What is the value of calling foo(2,7) on an object of the class that this method belongs to?

	

