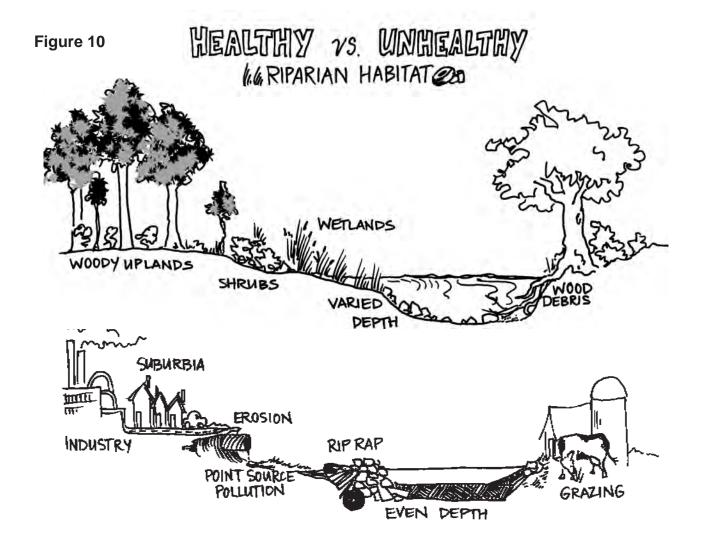

Habitat Assessment

Chapter 2 discussed how water quality is a reflection of the land use in the watershed. However, the condition of land within and along the stream channel is also critical to the health of the stream and its ability to support aquatic life.

What is a Healthy Stream Habitat?

A natural stream channel does not flow in a straight line; it meanders. Rivers meander as they flow because this pattern releases the kinetic energy of the water in the most even or uniform manner. Meanders also provide a variety of habitats for many species of plants and animals. Pools, riffles, undercut banks and snags (fallen limbs or small log piles) all provide different types of habitat. The more types of habitat present in a stream system, the greater the potential for aquatic plant and animal diversity.


A uniformly straight or deep channel provides less potential habitat than a stream with variable flows and depths. Examples of healthy and unhealthy stream habitats are shown in Figures 9 and 10.

What is the riparian zone?

The term "riparian zone" refers to the areas adjacent to stream channels (Figure 9). The riparian zone is the strip of land between the stream channel and upland hills. Stream riparian zones form an important transition zone between land and freshwater systems. Riparian vegetation refers to the plants that occur naturally on stream banks and along stream channels.

Streamside vegetation and wetlands are important components of a stream ecosystem because they provide streams with bank support and stabilization, erosion and flood control, water quality protection, fish and wildlife habitat, and scenic beauty. Plant roots bind soil to stream banks and reduce erosion, and deflect the cutting action of swift flowing stormwater, expanding surface ice, and strong winds. Streamside vegetation keeps the water cool by providing shade, and it provides habitat for aquatic and terrestrial creatures. In addition, plant litter that falls in upland streams is a major source of food for organisms in the stream. (From the "Streamwalk Training Manual," Thames River Basin Partnership Initiative.)

Citizens Qualitative Habitat Evaluation Index (CQHEI)

This index was developed by the Ohio Environmental Protection Agency as a "Citizens" companion to the Qualitative Habitat Evaluation Index (QHEI) used by the state's professional staff. The diagrams' data sheet on pages 25-26 were modified from information provided by the Ohio EPA. The purpose of the index is to provide a measure of the stream habitat and riparian health that generally corresponds to physical factors affecting fish and other aquatic life (i.e., macroinvertebrates). The CQHEI produces a total score that can be used to compare changes at one site over time or compare two different sites.

NOTE: The CQHEI data sheet was designed to be used primarily in wadeable streams. The index scores do not necessarily reflect the conditions found in intermittent streams or large rivers.

When completing the CQHEI, evaluate your entire stream site (200' section).

In each category choose the most predominant answer. If sections of the stream or stream banks have completely different characteristics, you may check two boxes and <u>average</u> the points to obtain a score for the subsection (a), (b), or (c). An example is provided on page 24.

I. Substrate (Bottom Type) - Max 24 pts

(Note: "smothering" is the same as "embeddedness." See Figure 7 on page 13. Check "yes" for smothering, if the steam bottom is more than 50% embedded.)

II. Fish Cover (Hiding Places) - Max 20 pts Select all the cover types that you see using the diagrams on page 22 as a guide. Add the points.

III. Stream Shape and Human Alterations - Max 20 pts

IV. Stream Forests and Wetlands (Riparian Areas) & Erosion - Max 20 pts

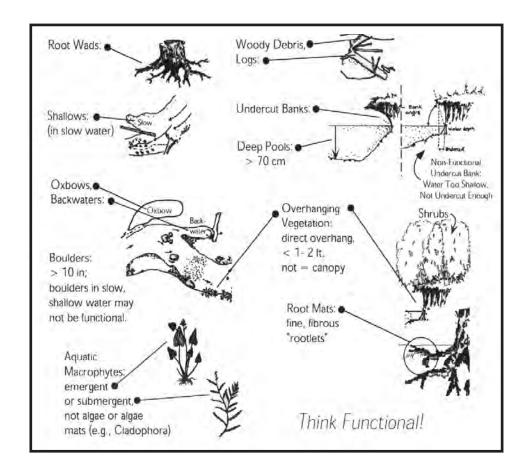
- a) Width of the Riparian Forest or Wetland <u>This is not the width of the stream!</u> Estimate the width of the area containing trees or wetlands on each side of the stream by answering: "Can you throw a rock to the other side?"
- b) See Appendix B-2 for a description of conservation tillage.

V. Depth & Velocity - Max 15 pts

- a) Deepest Pool If your stream is a consistent depth, select the maximum depth.
- b) Select all the flow types that you see and add the points.

VI. Riffles/Runs (where the current is turbulent) - Max 15

Using the lower diagrams on page 22 as a guide.


MAXIMUM TOTAL POINTS FOR THE CQHEI IS 114.

If the score is over 100, consider it "extra credit." You have an exceptional high-quality stream.

A set of ranges for Excellent, Medium, Poor, Very Poor has not yet been developed for this index - but,

QHEI scores > 60 have been found to be "generally conducive to the existence of warmwater fauna."

CQHEI Section II: Fish Cover "Hiding Places"

Riffle and Run Habitats:

Riffle - areas of the stream with fast current velocity and shallow depth; the water surface is visibly broken.

Run - areas of the stream that have a rapid, non-turbulent flow; runs are deeper than riffles with a faster current velocity than pools and are generally located downstream from riffles where the stream narrows; the stream bed is often flat beneath a run and the water surface is not visibly broken.

CQHEI Sections V & VI: Depth and Velocity and Riffles and Runs

Pool and Glide Habitats:

Pool - an area of the stream with slow current velocity and a depth greater than riffle and run areas; the stream bed is often concave and stream width frequently is the greatest; the water surface slope is nearly zero.

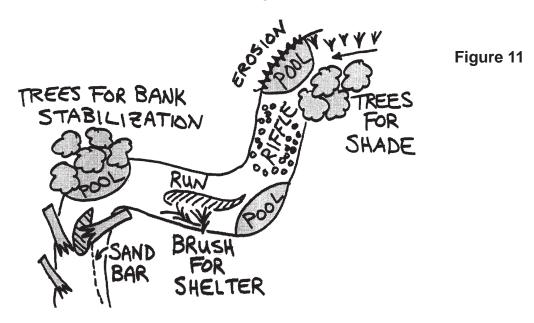
Glide - this is an area common to most modified stream channels that do not have distinguishable pool, run, and riffle habitats; the current and flow is similar to that of a canal; the water surface gradient is nearly zero.

HINT: These habitat types typically grade into one another. For example a run gradually changes into a pool.

Citizens Qualitative Habitat Evaluation Index (CQHEI) Date: __/__/__ Volunteer ID: ___ Site ID: __ Stream Name: **CQHEI Total** I. SUBSTRATE (bottom type) c) "Silting" a) Size b) "Smothering" Are Silts and Clays Distributed Are Fist Size and Larger Pieces Throughout Stream? Smothered By Sands/Silts? Mostly Small (Smaller Mostly Large Than Fingernail, but Symptoms: (Fist Size or Bigger) Coarse, or Bedrock) Light kicking 14 pt 5 pt 5 pt Symptoms: results in Hard to move pieces, often Mostly Medium Mostly Very Fine (Not substantial black on bottom. clouding for (Smaller than Fist, Coarse, Sometimes more than larger than Fingernail) Greasy or Mucky) a minute. hiding places) - Add 2 Points For Each One Present Score: Shrubs/Small Trees Underwater Tree Downed Trees, Logs, Water Plants Roots (Large) Hang Over the Bank or Branches Undercut Banks 2 pt Underwater Tree Backwaters, Oxbows or Shallow, Slow Areas Deep Areas for Small Fish Boulders Rootlets (Small) Side Channels (Chest Deep) 2 pt STREAM SHAPE and HUMAN ALTERATIONS a) "Curviness" or "Sinuousity" b) How Natural Is The Site? of Channel 2 or More Good Mostly Straight Many Man-Made Changes, but Some Natural Some Wiggle" Mostly Natural Conditions left (e.g., trees, meanders) Bends Few Minor Man-Made Changes Heavy, Man-made Changes (e.g., 1 or 2 Good Bends Very Straight (e.g., a bridge) leveed or channelized) | IV. STREAM FORESTS & WETLANDS (riparian area) & EROSION a) Riparian Width b) Land Use - Mostly: c) Bank Erosion d) Stream Shading Mostly: Wide (Can't throw Stable Hard or Well-Conservation Forest/Wetland Mostly a rock through it) Tillage Vegetated Banks 8 pt 4 pt Combination of Stable and Eroding Banks Narrow (can throw a rock through it) Shrubs Suburban Partly 5 pt 2 pt Overgrown Raw, Collapsing None Row Crop None Banks Fenced Pasture Open Pasture 2 pt Urban/ Park (Grass) Industrial V. DEPTH & VELOCITY a) Deepest Pool is At Least: b) Check ALL The Flow Types That You See (Add Points): Very Fast: Hard to Stand in Current Moderate: Slowly Takes Object Downstream Chest Deep Knee Deep 2 pt Slow: Flow Nearly Fast: Quickly Takes Object Waist Deep Downstream Absent 1 pt RIFFLES/RUNS (areas where current is fast/turbulent, surface may be broken a) Riffles/Runs Are: b) Riffle/Run Substrates Are: Knee Deep or Deeper and Fast Smaller Than Your Fingernails or Do Not Exist Ankle Deep or Less and Slow Fist Size or Larger 8 pt Ankle/Calf Deep Smaller Than Fist Size, but Do Not Exist Larger Than Fingernail and Fast

4 pt

6 pt


Citizens Qualitative Habitat Evaluation Index (CQHEI)

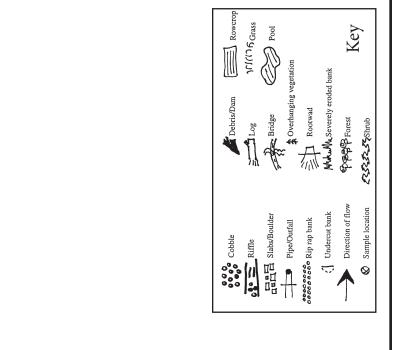
	09 Volunteer ID: 10		1000		85.5				
	mple Stream Ind	iana		QHEI Total					
I. SUBSTRATE (bot	tom type)	1) ((0) 41 + 2)		Sco					
a) Size Mostly Large	Mostly Small (Smaller Than Fingernail, but	b) "Smothering" Are Fist Size and Larger Piece Smothered By Sands/Silts?	ces	c) "Silting" Are Silts and Clays Distributed Throughout Stream?					
14 pt (Fist Size or Bigger)	Coarse, or Bedrock)	5 pt Symptoms:		5 pt No	Symptoms: Light kicking results in				
Mostly Medium (Smaller than Fist, larger than Fingernail)	Mostly Very Fine (Not Coarse, Sometimes Greasy or Mucky)	Hard to move pi black on bottom Yes	eces, often	O pt Yes	substantial clouding for more than a minute.				
II. FISH COVER (h	iding places) - Add 2 I	Points For Each One Pr	esent	Sco	ore: 14				
Underwater Tree Roots (Large)	Shrubs/Small Trees Hang Over the Bank 2 pt	Downed Trees, Logs, or Branches	Water Plants 2 pt	Undercut	t Banks				
Underwater Tree Rootlets (Small)	Backwaters, Oxbows or Side Channels	Shallow, Slow Areas for Small Fish	Deep Areas (Chest Deep)	$\sum_{\substack{2 \text{ pt}}}$ Boulders					
III. STREAM SHAP	E and HUMAN ALTE	ERATIONS		Sco	ore: 15				
a) "Curviness" or "Si of Channel	inuousity"	b) How Natural Is The	e Site?						
2 or More Good Bends	Mostly Straight Some Wiggle"	Mostly Natural 12 pt	Many Man-Made Chan Conditions left (e.g., tre		ral				
1 or 2 6 pt Good Bends	O pt Very Straight	Few Minor Man- Made Changes (e.g., a bridge)	Heavy, Man-made Char leveed or channelized)	nges (e.g.,					
IV. STREAM FORE	STS & WETLANDS (1	riparian area) & EROSI	ON	Sco	ore: 13.5				
a) Riparian Width Mostly:	b) Land Use - Mostly	<u> </u>	c) Bank Erosion	d) Stream	Shading				
Wide (Can't throw a rock through it)	Forest/Wetland	Conservation Tillage 2 pt	Stable Hard or Well- Vegetated Banks	3 pt Mostly					
Narrow (can throw a rock through it)	Average Apt Shrubs 3.5 pts	Suburban 1 pt	Combination of Stable ar Eroding Banks 2 pt	$\begin{array}{ c c }\hline X & Partly \\\hline 2 pt & \end{array}$					
None 0 pt	Overgrown Fields	1 pt Row Crop	Raw, Collapsing Banks	O pt None					
Average: 4 pts	Fenced Pasture 2 pt	Open Pasture							
4 pcs	Park (Grass)	Urban/ Industrial							
V. DEPTH & VELO	CITY			Sco	ore: 11				
a) Deepest Pool is At Least: b) Check ALL The Flow Types That You See (Add Points):									
X Chest Deep	Knee Deep 4 pt	Very Fast: Hard to Stand in Current	Moderate: Slowly Takes Object Downstream	None 0 pt					
Waist Deep	O pt Do Not Exist	Fast: Quickly Takes Object Downstream	Slow: Flow Nearly Absent 1 pt						
VI. RIFFLES/RUNS (areas where current is fast/turbulent, surface may be broken) Score: 10									
a) Riffles/Runs Are:	Auli D	b) Riffle/Run Substrat							
Knee Deep or Deeper and Fast	Ankle Deep or Less and Slow	Fist Size or Larger 7 pt	Smaller Than Your Fingernails or Do Not Ex	rist					
Ankle/Calf Deep and Fast	Do Not Exist	Smaller Than Fist Size, but Larger Than Fingernail							

Site Map and Stream Flow

Site Map

Drawing a map of your site location is an excellent first step in getting to know your 200 foot stream segment. Looking at an aerial photograph before or during your visit may also help with familiarization. Continuing this tradition on an annual basis may also alert you to changes at your site that may not have been obvious during regular sampling visits. An example map is shown below in Figure 11. **The stream map cannot be entered into the Volunteer Monitoring Internet Database.**

Stream Flow Calculations


A work sheet is provided on Page 27 to assist volunteers in determining the stream flow or discharge rate. (See page 28 for a completed example.) Discharge is the amount (volume) of water flowing in the stream per second. This measurement is important because it influences other physical, chemical, and biological factors in the stream (i.e., all of our other tests). A high discharge rate may indicate recent rainfall or snowmelt events. When a large amount of rain runs off the land, it often carries sediments and nutrients to the stream. Very low discharge rates may indicate drought conditions, which also affect water quality and aquatic life. The discharge rate is obtained by multiplying the average width, depth, and velocity of the stream. All measurements are taken (or converted) into feet. The data sheet includes a diagram and instructions. Stream flow calculations can be entered into the Volunteer Monitoring Internet Database (See Chapter 7).

Average Width (W) - width of the stream (the water itself) taken from where it touches the stream bank on one side to where it touches the stream bank on the other side - take three width measurements; when possible measure areas that appear most representative of the entire 200 foot stream section

Average Depth (Z) - three depth measurements are taken (using a yardstick) across the stream on three transects - nine total measurements

Average Velocity (V) - how fast the water is moving - measure a distance and time how long it takes an apple or orange to float the distance - repeat three times

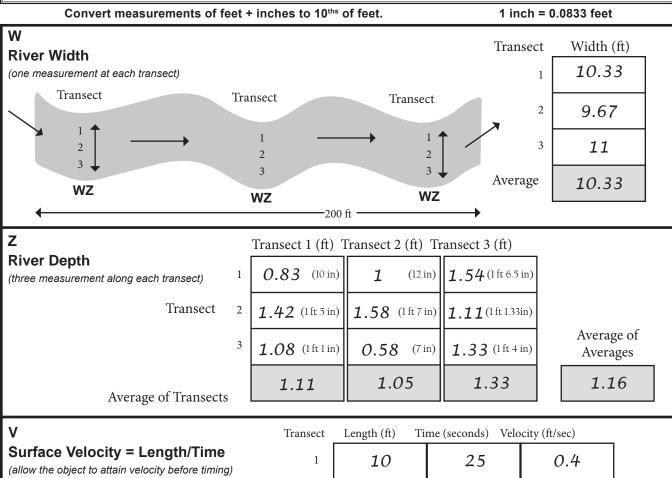
Roughness Coefficient (n) - select 0.8 for a gravel or rocky bottom; select 0.9 for sandy, muddy or bedrock

Stream Site Map

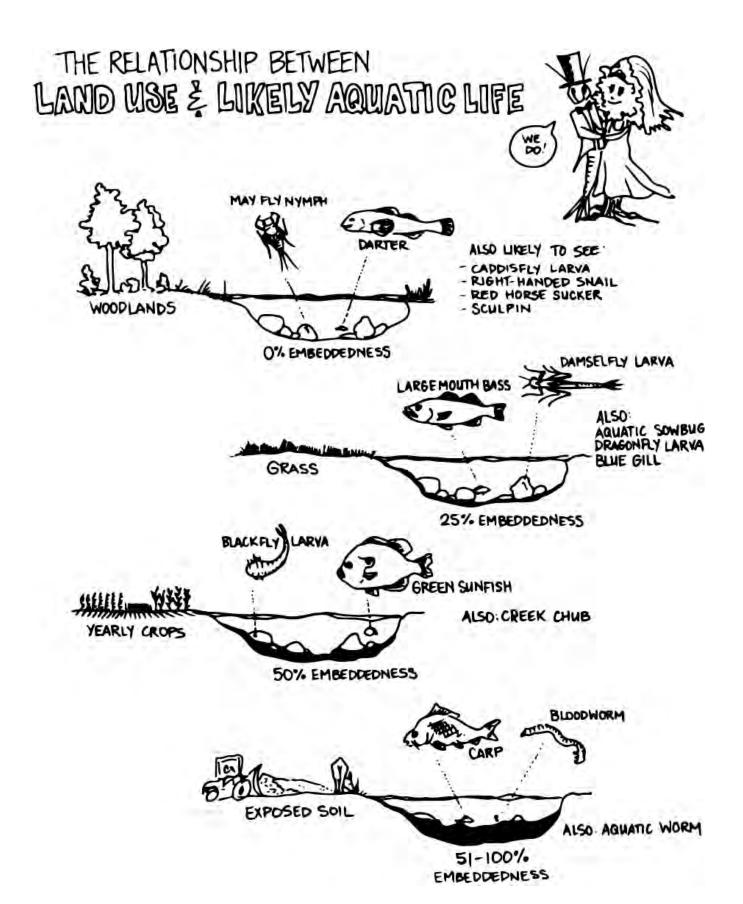
Hoosier Riverwatch Stream Flow (Discharge) Data Sheet

Oate/ Volunteer I	D	Site ID		Stream Name
Solving the equation:	Where:			
	W = Average Width			
	Z = Average Depth			
FLOW (D) = $W \times Z \times V \times n$	V = Average Velocity			
		for gravel/rocky botto for muddy or bedrock		ıs
	D = Flow/Discharge	or mada, or searces	bottom ou cum	.0
Convert measurements o	f feet + inches to 10ths	of feet.	1 inch = 0).0833 feet
W			Transect	Width (ft)
River Width (one measurement at each transect)			[(II)
Transect	Transect	T	1	
Transect	Transect	Transect	2	
1 1	1 —	1 🕇		
$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	2	2	3	
WZ	3	3 \$	Average	
1112	WZ 200	WZ	ا →	
			, 2 (6)	
River Depth	Transect I (ft)	Transect 2 (ft) Transe	ect 3 (ft)	
(three measurement along each transect)	1			
Transec	t 2			
				Average of
	3			Averages
Average of Transe	cts			
V	Transect	Length (ft) Time (seco	onds) Velocity (ft.	/aaa)
v Surface Velocity = Length/Tim	ne [Length (it) Thire (sect	rids) velocity (it	(Sec)
(allow the object to attain velocity before tim	1 1			
	2			
	-			
	3			
			Average	
D Streem Flow or Discharge				=
Stream Flow or Discharge	W x Z	x V x n*		D (cfs)
*Coeffecient (0.8 for gravel/rocky bottom str				D (CI3)

Hoosier Riverwatch

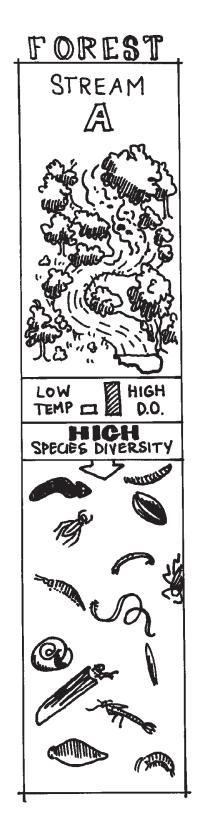

Stream Flow (Discharge) Data Sheet

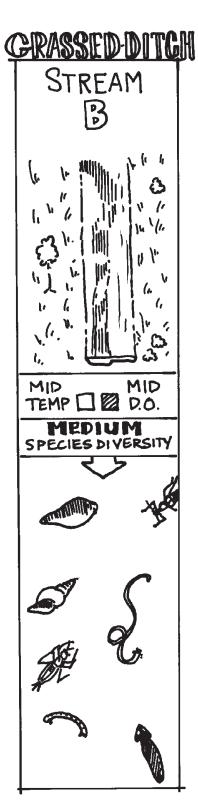
Date 10 04 09 Volunteer ID 1000 Site ID 1000 Stream Name Example Stream Indiana

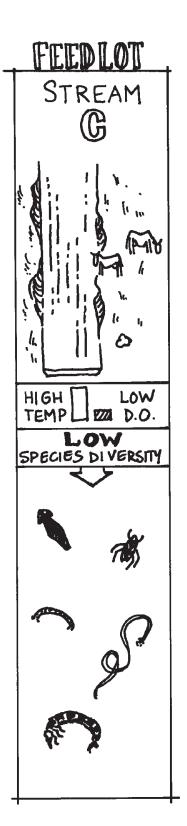

Solving the equation:

Where:
W = Average Width
Z = Average Depth

V = Average Velocity
n = Coefficient - 0.8 for gravel/rocky bottom streams
...
0.9 for muddy or bedrock bottom streams
D = Flow/Discharge




V	Transect	Length (ft) Time (seconds) Velocity (ft/sec)		
Surface Velocity = Length/Time (allow the object to attain velocity before timing)	1	10	25	0.4
	2	10	28	0.36
	3	10	26	0.38
	·		Average	0.38



REPRESENTATIVE STREAMS

HABITAT & SPECIES DIVERSITY

