Explaining Optimization
In Genetic Algorithms with Uniform Crossover

Keki M Burjorjee
Zite, Inc.
487 Bryant St.
San Francisco, CA 94107
kekib@cs.brandeis.edu

ABSTRACT

Hyperclimbing is an intuitive, general-purpose, global op-
timization heuristic applicable to discrete product spaces
with rugged or stochastic cost functions. The strength
of this heuristic lies in its insusceptibility to local optima
when the cost function is deterministic, and its tolerance
for noise when the cost function is stochastic. Hyper-
climbing works by decimating a search space, i.e., by itera-
tively fixing the values of small numbers of variables. The
hyperclimbing hypothesis posits that genetic algorithms with
uniform crossover (UGAs) perform optimization by imple-
menting efficient hyperclimbing. Proof of concept for the
hyperclimbing hypothesis comes from the use of an analytic
technique that exploits algorithmic symmetry. By way of
validation, we present experimental results showing that a
simple tweak inspired by the hyperclimbing hypothesis dra-
matically improves the performance of a UGA on large,
random instances of MAX-3SAT and the Sherrington Kirk-
patrick Spin Glasses problem. An exciting corollary of the
hyperclimbing hypothesis is that a form of implicit paral-
lelism more powerful than the kind described by Holland
underlies optimization in UGAs. The implications of the hy-
perclimbing hypothesis for Evolutionary Computation and
Artificial Intelligence are discussed.

Categories and Subject Descriptors

1.2.8 [Computing Methodologies|: Artificial Intelli-
gence— Problem Solving, Control Methods, and Search; F.2
[Theory of Computation]: Analysis of Algorithms And
Problem Complexity—Miscellaneous

General Terms
Algorithms; Theory

Keywords

Genetic Algorithms; Uniform Crossover; Hyperclimbing ;
MAXSAT; Spin Glasses; Global Optimization; Decimation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

FOGA’13, January 16D20, 2013, Adelaide, Australia.

Copyright 2013 ACM 978-1-4503-1990-4/13/01 ...$10.00.

1. INTRODUCTION

Optimization in genetic algorithms with uniform crossover
(UGASs) is one of the deep mysteries of Evolutionary Compu-
tation. The use of uniform crossover causes genetic loci to be
unlinked, i.e. recombine freely. This form of recombination
was first used by Ackley [1] in 1987, and was subsequently
studied by Syswerda [29], Eshelman et al. [8], and Spears &
De Jong [28, 7], who found that it frequently outperformed
crossover operators that induce tight linkage between genetic
loci (e.g. one point crossover). It is generally acknowledged
that the efficacy of uniform crossover, a highly disruptive
form of variation, cannot be explained within the rubric of
the building block hypothesis [11, 25, 9], the beleaguered, but
still influential explanation for optimization in genetic algo-
rithms with strong linkage between loci. Yet, no alternate,
scientifically rigorous explanation for optimization in UGAs
has been proposed. The hypothesis presented in this paper
addresses this gap. This hypothesis posits that UGAs per-
form optimization by implicitly and efficiently implementing
a global search heuristic called hyperclimbing.

Hyperclimbing is a global decimation heuristic, and as
such is in good company. Global decimation heuristics are
currently the state of the art approach to solving large in-
stances of the Boolean Satisfiablity Problem (SAT) close to
the SAT/UNSAT threshhold (i.e. hard instances of SAT)
[18]. Conventional global decimation heuristics—e.g. Sur-
vey Propagation [20], Belief Propagation, Warning Propa-
gation [3]—use message passing algorithms to compile sta-
tistical information about the space being searched. This
information is then used to irrevocably fix the values of one,
or a small number, of search space attributes, effectively
reducing the size of the space. The decimation heuristic
is then recursively applied to the resulting search space.
Survey Propagation, perhaps the best known global deci-
mation strategy, has been used along with Walksat [27] to
solve instances of SAT with upwards of a million variables.
The hyperclimbing hypothesis posits that in practice, UGAs
also perform optimization by decimating the search spaces
to which they are applied. Unlike conventional decimation
strategies, however, a UGA obtains statistical information
about the search space implicitly and efficiently by means
other than message passing.

We stress at the outset that our main concern in this pa-
per is scientific rigor in the Popperian tradition [24], not
mathematical proof within a formal axiomatic system. To
be considered scientifically rigorous, a hypothesis about an
evolutionary algorithm should meet at least the following
two criteria: First, it should be based on weak assumptions

about the distribution of fitness induced by the ad-hoc rep-
resentational choices of evolutionary algorithm users. This
is nothing but an application of Occam’s Razor to the do-
main of Evolutionary Computation. Second, the hypothesis
should predict unexpected behavior. (Popper noted that
the predictions that lend the most credence to a scientific
hypothesis are the ones that augur phenomena that would
not be expected in the absence of the hypothesis—e.g. grav-
itational lensing in the case of Einstein’s theory of General
Relativity)

The criteria above constitute the most basic requirements
that a hypothesis should meet. But one can ask for more; af-
ter all, one has greater control over evolutionary algorithms
than one does over, say, gravity. Recognizing this advantage,
we specify two additional criteria. The first is upfront proof
of concept. Any predicted behavior must be demonstrated
unambiguously, even if it is only on a contrived fitness func-
tion. Requiring upfront proof of concept heads off a situation
in which predicted behavior fails to materialize in the set-
ting where it is most expected (cf. Royal Roads experiments
[21]). Such episodes tarnish not just the hypothesis con-
cerned but the scientific approach in general-—an approach,
it needs to be said in light of the current slant of theoretical
research in evolutionary computation—that lies at the foun-
dation of many a vibrant field of engineering. The second
criterion is upfront validation of unexpected behavior on a
non-contrived fitness function. Given the control we have
over an evolutionary algorithm, it is reasonable to ask for
a prediction of unexpected behavior on a real-world fitness
function, and to require upfront validation of this prediction.

The hyperclimbing hypothesis, we are pleased to report,
meets all of the criteria listed above. The rest of this paper
is organized as follows: Section 2 provides an informal de-
scription of the hyperclimbing heuristic and lists the under-
lying assumptions about the distribution of fitness. A more
formal description of the hyperclimbing heuristic appears
in Appendix A. Section 3 outlines symmetries of uniform
crossover and length independent mutation that we subse-
quently exploit. Section 4, presents proof of concept, i.e. it
describes a stochastic fitness function—the Royal Roads of
the hyperclimbing hypothesis—on which a UGA behaves as
described. Then, by exploiting the symmetries of uniform
crossover and length independent mutation, we argue that
the adaptive capacity of a UGA scales extraordinarily well
as the size of the search space increases. We follow up with
experimental tests that validate this conclusion. In section 5
we make a prediction about the behavior of a UGA, and val-
idate this prediction on large, randomly generated instances
of MAX-3SAT and the Sherrington Kirkpatric Spin Glasses
problem. We conclude in Section 6 with a discussion about
the generalizability of the hyperclimbing hypothesis and its
implications for Evolutionary Computation.

2. THE HYPERCLIMBING HEURISTIC

For a sketch of the hyperclimbing heuristic, consider a
search space S = {0,1}, and a (possibly stochastic) fitness
function that maps points in S to real values. Given some in-
dex set Z C {1,...,¢}, T partitions S into 2171 subsets called
schemata (singular schema) [21] as in the following example:
suppose £ = 4, and Z = {1, 3}, then Z partitions S into the
subsets {0000,0001,0100,0101}, {0010,0011,0110,0111},
{1000, 1001,1100,1101}, {1010,1011,1110,1111}. Parti-
tions of this type are called schema partitions. Schemata and

schema partitions can also be expressed using templates, for
example, 0 * 1% and # * #x* respectively. Here the symbol
x stands for ‘wildcard’, and the symbol # denotes a defined
bit. The order of a schema partition is simply the cardi-
nality of the index set that defines the partition. Clearly,
schema partitions of lower order are coarser than schema
partitions of higher order. The effect of a schema partition
is defined to be the variance of the expected fitness of the
constituent schemata under sampling from the uniform dis-
tribution over each schema. So for example, the effect of the
schema partition # « #+ = {0 0%, 0% 1x, 1+ 0%, 1 % 1x} is

i Z Z(F(z * Jx) — F (% % **))2

i=0 j=0

where the operator F' gives the expected fitness of a schema
under sampling from the uniform distribution.

A hyperclimbing heuristic starts by sampling from the
uniform distribution over the entire search space. It subse-
quently identifies a coarse schema partition with a non-zero
effect, and limits future sampling to a schema in this par-
tition with above average expected fitness. In other words
the hyperclimbing heuristic fixes the defining bits [21] of this
schema in the population. This schema constitutes a new
(smaller) search space to which the hyperclimbing heuristic
is recursively applied. Crucially, the act of fixing defining
bits in a population has the potential to “generate” a de-
tectable non-zero effects in schema partitions that previously
might have had a negligible effects. For example, the schema
partition *# * % % # may have a negligible effect, whereas
the schema partition 1# % 0 x # has a detectable non-zero
effect. This observation is essential to understanding the hy-
perclimbing heuristic’s capacity for optimization. A fitness
distribution in which this structure is recursively repeated is
said to have staggered conditional effects. The assumption
that a fitness function induces staggered conditional effects
is a weak assumption. In comparison, the building block
hypothesis assumes unstaggered unconditional effects, and
even this only when the defining bits of building blocks can
be unlinked. This is a much stronger assumption because
there are vastly more ways for effects to be staggered and
conditional than unstaggered and unconditional. A more
formal description of the hyperclimbing heuristic can be
found in Appendix A, and a simple realization of a fitness
function with staggered conditional effects appears in Sec-
tion 4

At each step in its progression, hyperclimbing is sensitive,
not to the fitness value of any individual point, but to the
sampling means of relatively coarse schemata. This heuris-
tic is, therefore, natively able to tackle optimization prob-
lems with stochastic cost functions. Considering its simplic-
ity, the hyperclimbing heuristic has almost certainly been
lighted upon by other researchers in the general field of dis-
crete optimization. In all likelihood it was set aside each
time because of the seemingly high cost of implementation
for all but the smallest of search spaces or the coarsest of
schema partitions. Given a search space comprised of £ bi-
nary variables, there are (i) schema partitions of order o.
For any fixed value of o, (‘) € Q(¢°) [6]. The exciting find-
ing presented in this paper is that UGAs can implement
hyperclimbing cheaply for large values of ¢, and values of o
that are small, but greater than one.

3. SYMMETRIES OF A UGA

A genetic algorithm with a finite but non-unitary popu-
lation of size N (the kind of GA used in practice) can be
modeled by a Markov Chain over a state space consisting of
all possible populations of size N [22]. Such models tend to
be unwieldy [13] and difficult to analyze for all but the most
trivial fitness functions. Fortunately, it is possible to avoid
this kind of modeling and analysis, and still obtain precise
results for non-trivial fitness functions by exploiting some
simple symmetries introduced through the use of uniform
crossover and length independent mutation.

A homologous crossover operator between two chromo-
somes of length ¢ can be modeled by a vector of £ random bi-
nary variables (X1,..., X¢) from which crossover masks are
sampled. Likewise, a mutation operator can be modeled by a
vector of ¢ random binary variables (Y1,...,Ye) from which
mutation masks are sampled. Only in the case of uniform
crossover are the random variables X1, ..., Xy independent
and identically distributed. This absence of positional bias
[8] in uniform crossover constitutes a symmetry. Essentially,
permuting the bits of all chromosomes using some permuta-
tion 7 before crossover, and permuting the bits back using
7! after crossover has no effect on the dynamics of a UGA.
If, in addition, the random variables Y7,..., Y, that model
the mutation operator are independent and identically dis-
tributed (which is typical), and (more crucially) indepen-
dent of the value of £, then in the event that the values of
chromosomes at some locus ¢ are immaterial during fitness
evaluation, the locus ¢ can be “spliced out” without affecting
allele dynamics at other loci. In other words, the dynamics
of the UGA can be coarse-grained [4].

These conclusions flow readily from an appreciation of the
symmetries induced by uniform crossover and length inde-
pendent mutation. While the use of symmetry arguments is
uncommon in EC research, symmetry arguments form a cru-
cial part of the foundations of physics and chemistry. Indeed,
according to the theoretical physicist E. T. Jaynes “almost
the only known exact results in atomic and nuclear structure
are those which we can deduce by symmetry arguments, us-
ing the methods of group theory” [16, p331-332]. Note that
the conclusions above hold true regardless of the selection
scheme (fitness proportionate, tournament, truncation, etc),
and any fitness scaling that may occur (sigma scaling, linear
scaling etc). “The great power of symmetry arguments lies
just in the fact that they are not deterred by any amount of
complication in the details”, writes Jaynes [16, p331]. An ap-
peal to symmetry, in other words, allows one to cut through
complications that might hobble attempts to reason within
a formal axiomatic system.

Of course, symmetry arguments are not without peril.
However, when used sparingly and only in circumstances
where the symmetries are readily apparent, they can yield
significant insight at low cost. It bears emphasizing that the
goal of foundational work in evolutionary computation is not
pristine mathematics within a formal axiomatic system, but
insights of the kind that allow one to a) explain optimization
in current evolutionary algorithms on real world problems,
and b) design more effective evolutionary algorithms.

4. PROOF OF CONCEPT

Providing unambiguous evidence that a UGA can behave
as described in the hyperclimbing hypothesis is one of the

Algorithm 1:
A staircase function with descriptor (h,o0,0,0,¢,L,V)

Input: g is a chromosome of length /¢

x < some value drawn from the distribution A(0, 1)
for i <+ 1 to h do
if 21,.(¢9) = Vi1 ...Vio then
| 2+ x+46
else
z+x—(6/(2°-1))
break
end
end
return

explicit goals of this paper. To achieve this aim we intro-
duce the staircase function, a “Royal Roads” for the hyper-
climbing heuristic, and provide experimental evidence that a
UGA can perform hyperclimbing on a particular parameter-
ization of this function. Then, using symmetry arguments,
we conclude that the running time and the number of fitness
queries required to achieve equivalent results scale surpris-
ingly well with changes to key parameters. An experimental
test validates this conclusion.

DEFINITION 1. A staircase function descriptor is a 6-
tuple (h,0,0,£,L,V) where h, o and £ are positive integers
such that ho < £, § is a positive real number, and L and V
are matrices with h rows and o columns such that the values
of V are binary digits, and the elements of L are distinct
integers in {1,...,¢}.

For any positive integer £, let [¢] denote the set {1,..., ¢},
and let B, denote the set of binary strings of length ¢. Given
any k-tuple, z, of integers in [¢], and any binary string g €
By, let Z4(g) denote the string b1, ..., by such that for any
i € [k], bi = go,. For any m X n matrix M, and any ¢ € [m],
let M;. denote the n-tuple that is the it" row of M. Let
N(a,b) denote the normal distribution with mean a and
variance b. Then the function, f, described by the staircase
function descriptor (h,0,4d,¢, L, V) is the stochastic function
over the set of binary strings of length ¢ given by Algorithm
1. The parameters h, 0,6, and £ are called the height, order,
increment and span, respectively, of f. For any ¢ € [h],
we define step i of f to be the schema {g € B,|=r,. (9) =
Vii...Vio}, and define stage i of f to be the schema {g €
Be|(Er,.(9) =Vir. .. Vie) Ao . A (B, (9) = Vir ... Vio) }

The stages of a staircase function can be visualized as
a progression of nested hyperplanes', with hyperplanes of
higher order and higher expected fitness nested within
hyperplanes of lower order and lower expected fitness.
By choosing an appropriate scheme for mapping a high-
dimensional hypercube onto a two dimensional plot, it be-
comes possible to visualize this progression of hyperplanes
in two dimensions (Appendix B).

A step of the staircase function is said to have been climbed
when future sampling of the search space is largely limited
to that step. Just as it is hard to climb higher steps of
a physical staircase without climbing lower steps first, it

! A hyperplane, in the current context, is just a geometrical
representation of a schema [10, p 53].

Algorithm 2: Pseudocode for the UGA used. The pop-
ulation size is an even number, denoted N, the length of
the chromosomes is ¢, and for any chromosomal bit, the
probability that the bit will be flipped during mutation
(the per bit mutation probability) is p.,. The population
is represented internally as an N by ¢ array of bits, with
each row representing a single chromosome. GENERATE-
UX-MASKS(z,y) creates an x by y array of bits drawn
from the uniform distribution over {0,1}. GENERATE-
MuT-MASKS(z, y, z) returns an = by y array of bits such
that any given bit is 1 with probability z.

pop < INITIALIZE-POPULATION(N ,{)
while some termination condition is unreached do
fitnessValues < EVALUATE-FITNESS(pop)
adjustedFitVals < SIGMA-SCALE(fitnessV alues)
parents <— SUS-SELECTION(pop, adjusted FitV als)
crossMasks < GENERATE-UX-MASKS(N/2, £)
for i «+ 1 to N/2 do
for j < 1to{ do
if crossMasks[i, j] = 0 then
‘ newPopli, j] parents|i, j|
newPopli + N/2, j] + parents[i + N/2, j]
else
‘ newPopli, j] < parents[i + N/2, j|
newPopli + N/2, j] < parents[i, j]
end
end

end
mutMasks < GENERATE-MUT-MASKS(N, £, pp)
for i < 1 to N do
for j < 1 to { do
newPopli, j] < XOR(newPopli, j],
mutMasks[i, j])
end

end
pop < newPop
end

can be computationally expensive to identify higher steps
of a staircase function without identifying lower steps first
(Theorem 1, Appendix C). The difficulty of climbing step i €
[h] given stage i — 1, however, is non-increasing with respect
to ¢ (Corollary 1, Appendix C). We conjecture that staircase
functions capture a feature— staggered conditional effects—
that is widespread within the fitness functions resulting from
the representational choices of GA users.

4.1 UGA Specification

The pseudocode for the UGA used in this paper is given
in Algorithm 2. The free parameters of the UGA are N (the
size of the population), p. (the per bit mutation probabil-
ity), and EVALUATE-FITNESS (the fitness function). Once
these parameters are fixed, the UGA is fully specified. The
specification of a fitness function implicitly determines the
length of the chromosomes, ¢. Two points deserve further
elaboration:

1. The function SUS-SELECTION takes a population of
size N, and a corresponding set of fitness values as in-
puts. It returns a set of N parents drawn by fitness
proportionate stochastic universal sampling (SUS). In-

stead of selecting N parents by spinning a roulette
wheel with one pointer N times, stochastic univer-
sal sampling selects N parents by spinning a roulette
wheel with N equally spaced pointers just once. Se-
lecting parents this way has been shown to reduce sam-
pling error [2, 21].

2. When selection is fitness proportionate, an increase in
the average fitness of the population causes a decrease
in selection pressure. The UGA in Algorithm 2 com-
bats this ill-effect by using sigma scaling [21, p 167]
to adjust the fitness values returned by EVALUATE-
F1TNESS. These adjusted fitness values, not the raw
ones, are used when selecting parents. Let fét) denote
the raw fitness of some chromosome z in some gen-
eration ¢, and let f® and ¢ denote the mean and
standard deviation of the raw fitness values in gener-
ation t respectively. Then the adjusted fitness of x in
generation ¢ is given by ht) where, if 6 = 0 then
h{Y = 1, otherwise,

) _ 7
) _ s —f
hy’ = min(0,1 + —®

The use of sigma scaling also causes negative fitness
values to be handled appropriately.

4.2 Performance of a UGA on a class of
Staircase Functions

Let f be a staircase function with descriptor
(h,0,6,¢,L,V), we say that f is basic if £ = ho,
Li; = o(i — 1) + j, (ie. if L is the matrix of integers
from 1 to ho laid out row-wise), and V is a matrix of ones.
If f is known to be basic, then the last three elements of
the descriptor of f are fully determinable from the first
three, and its descriptor can be shortened to (h, 0,). Given
some staircase function f with descriptor (h,o0,4,¢,L,V),
we define the basic form of f to be the (basic) staircase
function with descriptor (h, o0, 9).

Let ¢" be the basic staircase function with descriptor
(h = 50,0 = 4,5 = 0.3), and let U denote the UGA de-
fined in section 4.1 with a population size of 500, and a per
bit mutation probability of 0.003 (i.e, p, = 0.003). Fig-
ure la shows that U is capable of robust optimization when
applied to ¢* (We denote the resulting algorithm by U ¢*).
Figure 1c shows that under the action of U, the first four
steps of ¢* go to fixation? in ascending order. When a step
gets fixed, future sampling will largely be confined to that
step—in effect, the hyperplane associated with the step has
been climbed. Note that the UGA does not need to “fully”
climb a step before it begins climbing the subsequent step
(Figure 1c). Animation 1 in the online appendix® shows
that the hyperclimbing behavior of U ¢" continues beyond
the first four steps.

2The terms ‘fixation’ and ‘fixing’ are used loosely here.
Clearly, as long as the mutation rate is non-zero, no locus
can ever be said to go to fixation in the strict sense of the
word.

3Online appendix available at http://bit.1ly/QFHNAk

http://bit.ly/QFHNAk

Average Fitness of Population

~

Fitness

N W A~ 01O

0
0 1000 2000 3000 4000 5000
Generations

Frequency
o

s
f

S
L

0 50 100 150 200 250
Generations

()

Average Fitness of Population

Fitness

N W A~ 01O

0
0 1000 2000 3000 4000 5000
Generations

(b)

o

o
o L

Frequency

=

:

v
A

e

0 50 100 150 200 250
Generations

(d)

Figure 1: (a) The mean, across 20 trials, of the average fitness of the population of U?" in each of 5000
generations. The error bars show five standard errors above and below the mean every 200 generations. (c)
Going from the top plot to the bottom plot, the mean frequencies, across 20 trials, of the first four steps of
the staircase function U?" in each of the first 250 generations. The error bars show three standard errors
above and below the mean every 12 generations. (b,d) Same as the plots on the left, but for U®

4.3 Symmetry Analysis and Experimental
Confirmation

Let W be some UGA. For any staircase function f, and
any z € [0, 1], let pgtvi/f 1)(1:) denote the probability that the
frequency of stage i of f in generation ¢ of W/ is x. Let f*
be the basic form of f. Then, by appreciating the symme-
tries between the UGAs W7 and W/~ one can conclude the
following;:

CONCLUSION 1. For any generation t, any i € [h], and
t t
any T € [Oa 1]7 pEV?/f,i) (x) = pEV?/f*,i)(x)

This conclusion straightforwardly entails that to raise the
average fitness of a population by some attainable value,

1. The expected number of generations required is con-
stant with respect to the span of a staircase function
(i.e., the query complexity is constant)

2. The running time* scales linearly with the span of a
staircase function

3. The running time and the number of generations are
unaffected by the last two elements of the descriptor
of a staircase function

Let f be some staircase function with basic form ¢* (de-
fined in Section 4.2). Then, given the above, the application
of U to f should, discounting deviations due to sampling,

4Here, we mean the running time in the conventional sense,
not the number of fitness queries.

produce results identical to those shown in Figures la and
lc. We validated this “corollary” by applying U to the stair-
case function ¢ with descriptor (h = 50,0 = 4,0 = 0.3,{ =
20000, L, V') where L and V were randomly generated. The
results are shown in Figures 1b and 1d. Note that gross
changes to the matrices L and V, and an increase in the
span of the staircase function by two orders of magnitude
did not produce any statistically significant changes. It is
hard to think of another algorithm with better scaling prop-
erties on this non-trivial class of fitness functions.

S. VALIDATION

Let us pause to consider a curious aspect of the behavior
of U?". Figure 1 shows that the growth rate of the aver-
age fitness of the population of U ¢" decreases as evolution
proceeds, and the average fitness of the population plateaus
at a level that falls significantly short of the maximum ex-
pected average population fitness of 15. As discussed in the
previous section, the difficulty of climbing step ¢ given stage
i — 1 is non-increasing with respect to i¢. So, given that U
successfully identifies the first step of ¢*, why does it fail to
identify all remaining steps? To understand why, consider
some binary string that belongs to the i*" stage of ¢*. Since
the mutation rate of U is 0.003, the probability that this
binary string will still belong to stage i after mutation is
0.997%°. This entails that as 4 increases, U®" is less able to
“hold” a population within stage . In light of this observa-
tion, one can infer that as i increases the sensitivity of U
to the conditional fitness signal of step ¢ given stage i — 1
will decrease. This loss in sensitivity explains the decrease
in the growth rate of the average fitness of U ¢". We call the
“wastage” of fitness queries described here mutational drag.

To curb mutational drag in UGAs, we conceived of
a very simple tweak called clamping. This tweak
relies on parameters flagFreqThreshold € [0.5,1],
unflagFreqThreshold € [0.5, flagFreqThreshold], and the
positive integer waitingPeriod. If the one-frequency or
the zero-frequency of some locus (i.e. the frequency of
the bit 1 or the frequency of the bit 0, respectively,
at that locus) at the beginning of some generation is
greater than flagFreqThreshold, then the locus is flagged.
Once flagged, a locus remains flagged as long as the one-
frequency or the zero-frequency of the locus is greater than
unflagFreqThreshold at the beginning of each subsequent
generation. If a flagged locus in some generation ¢ has re-
mained constantly flagged for the last waitingPeriod gen-
erations, then the locus is considered to have passed our fix-
ation test, and is not mutated in generation ¢t. This tweak
is called clamping because it is expected that in the absence
of mutation, a locus that has passed our fixation test will
quickly go to strict fixation, i.e. the one-frequency, or the
zero-frequency of the locus will get “clamped” at one for the
remainder of the run.

Let U. denote a UGA that uses the clamping mecha-
nism described above and is identical to the UGA U in
every other way. The clamping mechanism used by U.
is parameterized as follows: flagFreqThreshold = 0.99,
unflagFreqThreshold = 0.9, waitingPeriod=200. The per-
formance of U$" is displayed in figure 2a. Figure 2b shows
the number of loci that the clamping mechanism left unmu-
tated in each generation. These two figures show that the
clamping mechanism effectively allowed U, to climb all the
stages of ¢*. Animation 2 in the online appendix shows the

16

14

12

10

Fitness
[e¢]

0 500 1000 1500 2000 2500
Generations

(a)

200
180

140
120
100

Unmutated loci

80
60
40
20

0 500 1000 1500 2000 2500
Generation

(b)

Figure 2: (Top) The mean (across 20 trials) of the
average fitness of the UGA U, on the staircase func-
tion ¢*. Errorbars show five standard errors above
and below the mean every 200 generations. (Bot-
tom) The mean (across 20 trials) of the number of
loci left unmutated by the clamping mechanism. Er-
rorbars show three standard errors above and below
the mean every 200 generations

one-frequency dynamics, across 500 generations, of a single
run of Uf*. The action of the clamping mechanism can be
seen in the absence of ‘jitter’ in the one-frequencies of loci
that have been at fixation for 200 or more generations.

If the hyperclimbing hypothesis is accurate, then muta-
tional drag is likely to be an issue when UGAs are applied
to other problems, especially large instances that require the
use of long chromosomes. In such cases, the use of clamping
should improve performance. We now present the results
of experiments where the use of clamping clearly improves
the performance of a UGA on large instances of MAX-3SAT
and the Sherrington Kirkpatrik Spin Glasses problem.

5.1 Validation on MAX-3SAT

MAX-kSAT [14] is one of the most extensively studied
combinatorial optimization problems. An instance of this
problem consists of n boolean variables, and m clauses. The

literals of the instance are the n variables and their nega-
tions. Each clause is a disjunction of k of the total possible
2n literals. Given some MAX-kSAT instance, the value of a
particular setting of the n variables is simply the number of
the m clauses that evaluate to true. In a uniform random
MAX-kKSAT problem, the clauses are generated by picking
each literal at random (with replacement) from amongst the
2n literals. Generated clauses containing multiple copies of
a variable, and ones containing a variable and its negation,
are discarded and replaced.

Let @ denote the UGA defined in section 4.1 with a pop-
ulation size of 200 (N = 200) and a per bit mutation proba-
bility of 0.01 (i.e., pm = 0.01). We applied @ to a randomly
generated instance of the Uniform Random 3SAT problem,
denoted sat, with 1000 binary variables and 4000 clauses.
Variable assignments were straightforwardly encoded, with
each bit in a chromosome representing the value of a sin-
gle variable. The fitness of a chromosome was simply the
number of clauses satisfied under the variable assignment
represented. Figure 3a shows the average fitness of the pop-
ulation of Q*** over 7000 generations. Note that the growth
in the maximum and average fitness of the population ta-
pered off by generation 1000.

The UGA @ was applied to sat once again; this time,
however, the clamping mechanism described above was ac-
tivated in generation 2000. The resulting UGA is de-
noted @5**. The clamping parameters used were as follows:
flagFreqThreshold = 0.99, unflagFreqthreshold = 0.8,
waitingPeriod = 200. The average fitness of the popula-
tion of Q:** over 7000 generations is shown in Figure 3b,
and the number of loci that the clamping mechanism left
unmutated in each generation is shown in Figure 3c. Once
again, the growth in the maximum and average fitness of
the population tapered off by generation 1000. However,
the maximum and average fitness began to grow once again
starting at generation 2200. This growth coincides with the
commencement of the clamping of loci (compare Figures 3b
and 3c).

5.2 Validation on an SK Spin Glasses System
A Sherrington Kirkpatrick Spin Glasses system is a set
of coupling constants J;;, with 1 < i < j < £. Given a
configuration of “spins” (o1,...,0¢), where each spin is a
value in {+1, —1}, the “energy” of the system is given by

E(O’):— Z JijO'iO'j

1<i<j<e

The goal is to find a spin configuration that minimizes en-
ergy. By defining the fitness of some spin configuration o to
be —FE(0) we remain true to the conventional goal in genetic
algorithmics of maximizing fitness. The coupling constants
in J may be drawn from the set {—1,0,4+1} or from the
gaussian distribution A(0,1). Following Pelikan et al. [23],
we used coupling constants drawn from N(0, 1). Each chro-
mosome in the evolving population straightforwardly repre-
sented a spin configuration, with the bits 1 and 0 denoting
the spins +1 and —1 respectively®. The UGAs Q and Q.

5Given an n x £ matrix P representing a population of n spin
configurations, each of size ¢, the energies of the spin config-
urations can be expressed compactly as —PJT PT where J
is an ¢ x ¢ upper triangular matrix containing the coupling
constants of the SK system.

(described in the previous subsection) were applied to a ran-
domly generated Sherrington Kirkpatrik spin glasses system
over 1000 spins, denoted spin. The results obtained (Fig-
ures 3d, 3e, and 3f) were similar to the results described in
the previous subsection.

It should be noted that clamping by itself does not cause
decimation. It merely enforces strict fixation once a high
degree of fixation has already occurred along some dimen-
sion. In other words, clamping can be viewed as a decima-
tion “lock-in” mechanism as opposed to a decimation “forc-
ing” mechanism. Thus, the occurrence of clamping shown in
Figure 3 entails the prior occurrence of decimation.®

The effectiveness of clamping demonstrated in this sec-
tion lends considerable support to the hyperclimbing hy-
pothesis. The method followed is out of Popper’s Logic of
Scientific Discovery [24]. A scientific theory allows one to
make testable predictions of the form “if experiment X is ex-
ecuted, outcome Y will be observed”. One is free to choose
any X and Y as long as X entails Y given the theory. If the
test is successful, the theory gains credibility in proportion
to the extent to which Y is unanticipated in the absence
of the theory. More support of this kind can be found in
the work of Huifang and Mo [15] where the use of clamping
improved the performance of a UGA on a completely differ-
ent problem—optimizing the weights of a quantum neural
network.

6. CONCLUSION

Simple genetic algorithms with uniform crossover (UGAs)
perform optimization by implicitly exploiting the structure
of fitness distributions that arise in practice through the ad-
hoc representational choices of users. Two key questions are
i) What is the nature of this structure? and ii) How is this
structure exploited by the UGA? This paper offers a hy-
pothesis that answers these and other questions about UGA
behavior. The submitted hypothesis satisfies two basic re-
quirements that one might expect any scientific hypothesis
to meet—it relies only on assumptions that are weak, and it
predicts an unexpected phenomenon. The hypothesis meets
two additional requirements specific to the domain of evo-
lutionary computation: It is accompanied by upfront proof
of concept, and upfront validation. Section 4 unambigu-
ously showed that a UGA can behave as described in the
hyperclimbing hypothesis, and in Section 5, we predicted
behavior that would not be expected in the absence of the
hyperclimbing hypothesis, and validated this behavior on
two non-contrived fitness functions: MAX-3SAT and the
Sherrington Kirkpatrick Spin Glasses Problem.

An exciting corollary of the hyperclimbing hypothesis is
that implicit parallelism is real. To be sure, what we mean

SA cautionary note: It may be tempting, based on the re-
sults obtained, to speculate that mutation hurts UGA per-
formance, either on the fitness functions examined, or in
general. After all, if one stops using mutation altogether,
then the problem described at the beginning of Section 5—
the problem addressed by clamping—disappears. We stress
that this would be an incorrect conclusion to draw. A rigor-
ous treatment of the specific roles played by mutation and
uniform crossover in the implementation of hyperclimbing
is beyond our current scope. We emphasize, however, that
they both have parts to play. Briefly, mutation prevents the
strict fixation of loci that have lost entropy to random drift,
and uniform crossover allows hyperclimbing to proceed in
parallel [5, Chapter 4].

4000 4000 — 900
7

3950 3950 800

3900 3900 700
9 3850 ¢ 3850 5 600
2 g °
T 3800 T 3800 g 500
3 3 E
i QL >
Z 3750 o 3750 g 400
© © S
v 3700 o 3700 300

3650 3650 200

3600 3600 100

3550 3550 0

0 2000 4000 6000 0 2000 4000 6000 0 2000 4000 6000
Generations Generations Generation

(a) Performance of the UGA Q***

4 4

x 10 x 10

(b) Performance of the UGA Q3%

(c) Unmutated Loci in UGA Q3%

25 1000
900
2 800
.— 700
(5]
o
» 15 " E 600
& & 8
2 2 g 500
iy 1 w 5 400
300
0.5 200
100
0 0 0
0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000
Generations Generations Generation

(d) Performance of the UGA Q7"

(e) Performance of the UGA Q:P™"

(f) Unmutated Loci in UGA Qsrin

Figure 3: (a,b) The performance, over 10 trials, of the UGAs @ and the UGA Q. on a randomly generated
instance of the Uniform Random 3SAT problem with 1000 variables and 4000 clauses. The mean (across
trials) of the average fitness of the population is shown in black. The mean of the best-of-population fitness

is shown in blue.

Errorbars show five standard errors above and below the mean every 400 generations.

(c) The mean number of loci left unmutated by the clamping mechanism used by Q.. Errorbars show three
standard errors above and below the mean every 400 generations. The vertical dotted line marks generation
2200 in all three plots.(d,e,f) Same as above, but but for a randomly generated Sherrington Kirkpatrick Spin
Glasses System over 1000 spins (see main text for details)

by implicit parallelism differs somewhat from what Holland
meant. It is not the average fitness of coarse schemata that
gets evaluated and acted upon in parallel, but the effects of
vast numbers of coarse schema partitions. Significantly, the
defining length of the schemata in these partitions need not
be low. The implicit parallelism described in this paper is
thus of a more powerful kind than that described by Holland.
Readers seeking additional evidence of implicit parallelism
in UGAs are referred to Chapter 3 of [5].

A second corollary is that the idea of a hyperscape is much
more helpful than the idea of a landscape [30, 17] for un-
derstanding UGA behavior. Landscapes and hyperscapes
are both just ways of geometrically conceptualizing fitness
functions. Landscapes draw one’s attention to the inter-
play between fitness and neighborhood structure, whereas

hyperscapes focus one’s attention on the statistical fitness
properties of individual hyperplanes, and the spatial re-
lationships between hyperplanes—lower order hyperplanes
can contain higher order hyperplanes, hyperplanes can in-
tersect each other, and disjoint hyperplanes belonging to the
same hyperplane partition can be regarded as parallel. The
use of hyperscapes for understanding GA dynamics origi-
nated with Holland [12] and was popularized by Goldberg
[10]. Unfortunately, the use of hyperscapes tends to be asso-
ciated with belief in the building block hypothesis. With the
building block hypothesis falling into disrepute [9, 25], hy-
perscapes no longer enjoy the level of attention and interest
they once did. The hyperclimbing hypothesis resurrects the
hyperscape as a legitimate object of study, and posits that a

hyperscape feature called staggered conditional effects is the

key

to understanding the UGA’s capacity for optimization.

We see this paper as a foray into a new and exciting area
of research. Much work remains:

e The hyperclimbing hypothesis needs to be fleshed
out. Understanding the roles played by mutation and
crossover in the implementation of hyperclimbing and
understanding when a UGA will be deceived by a hy-
perscape are important goals.

Predicting unexpected phenomena and validating
them should be an ongoing activity. In the interest
of making progress, scientists sacrifice certainty, and
strike a bargain in which doubt can only be dimin-
ished, never eliminated. “Eternal vigilance” [26], in
other words, becomes the cost of progress. This means
that the work of the scientist, unlike that of the math-
ematician, is never quite done.

e Useful as it may be as an explanation for optimization
in UGAs, the ultimate value of the hyperclimbing hy-
pothesis lies in its generalizability. In a previous work
[5], the notion of a unit of inheritance—i.e., a gene—
was used to generalize this hypothesis to account for
optimization in genetic algorithms with strong link-
age between chromosomal loci (including genetic al-
gorithms that do not use crossover). It may be pos-
sible for the hyperclimbing hypothesis to be general-
ized further to account for optimization in other kinds
of evolutionary algorithms. whose search spaces con-
sist of real valued vectors, trees, graphs, and instances
of other data structures, as well as evolutionary algo-
rithms that use complex variation operators (i.e. prob-
abilistic model building genetic algorithms).

The field’s inability to identify a computation of some
kind that evolutionary algorithms perform efficiently is
a big reason why Evolutionary Computation remains
a niche area within Artificial Intelligence. The real-
ization that implicit parallelism is real has the poten-
tial to address this shortcoming. The field of Ma-
chine Learning, in particular, stands to benefit from
advances in EC. Most machine learning problems re-
duce to optimization problems, so a new appreciation
of how large-scale, general-purpose global optimization
can be efficiently implemented should be of interest to
researchers in this field. Reaching out to this and other
sub-communities in ways that resonate is a priority.

Last and most importantly, the numerous implications
of the hyperclimbing hypothesis for the construction
of more effective representations and evolutionary al-
gorithms needs to be explored. The simplicity of the
hyperclimbing hypothesis has us particularly excited.
Staggered conditional effects and implicit parallelism
are easy concepts to grasp, and offer a rich set of av-
enues to explore (branching and backtracking in hy-
perspace are two immediate ideas). We are curious to
see what folks come up with.

The online appendix is available at http://bit.1ly/QFHNAk

REFERENCES

D.H. Ackley. A connectionist machine for genetic
hillclimbing. Kluwer Academic Publishers, 1987.

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

James E. Baker. Adaptive selection methods for
genetic algorithms. In John J. Grefenstette, editor,
Proceedings of the First International Conference on
Genetic Algorithms and Their Applications. Lawrence
Erlbaum Associates, Publishers, 1985.

Alfredo Braunstein, Marc Mézard, and Riccardo
Zecchina. Survey propagation: an algorithm for
satisfiability. CoRR, ¢s.CC/0212002, 2002.

Keki Burjorjee. Sufficient conditions for
coarse-graining evolutionary dynamics. In Foundations
of Genetic Algorithms 9 (FOGA IX), 2007.

K.M. Burjorjee. Generative Fization: A Unifed
Ezplanation for the Adaptive Capacity of Simple
Recombinative Genetic Algorithms. PhD thesis,
Brandeis University, 2009.

T. H. Cormen, C. H. Leiserson, and R. L. Rivest.
Introduction to Algorithms. McGraw-Hill, 1990.
Kenneth A De Jong and William M Spears. A formal
analysis of the role of multi-point crossover in genetic
algorithms. Annals of Mathematics and Artificial
Intelligence, 5(1):1-26, 1992.

L.J. Eshelman, R.A. Caruana, and J.D. Schaffer.
Biases in the crossover landscape. Proceedings of the
third international conference on Genetic algorithms
table of contents, pages 10-19, 1989.

D. B. Fogel. Evolutionary Computation : Towards a
New Philosophy of Machine Intelligence. IEEE press,
2006.

David E. Goldberg. Genetic Algorithms in Search,
Optimization € Machine Learning. Addison-Wesley,
Reading, MA, 1989.

David E. Goldberg. The Design Of Innovation.
Kluwer Academic Publishers, 2002.

John H. Holland. Adaptation in Natural and Artificial
Systems: An Introductory Analysis with Applications
to Biology, Control, and Artificial Intelligence. MIT
Press, 1975.

John H. Holland. Building blocks, cohort genetic
algorithms, and hyperplane-defined functions.
Evolutionary Computation, 8(4):373-391, 2000.
Holger H. Hoos and Thomas Stiitzle. Stochastic Local
Search: Foundations and Applications. Morgan
Kaufmann, 2004.

Li Huifang and Li Mo. A new method of image
compression based on quantum neural network. In
International Conference of Information Science and
Management Engineering, pages pb67 — 570, 2010.
E.T. Jaynes. Probability Theory: The Logic of Science.
Cambridge University Press, 2007.

S.A. Kauffman. The Origins of Order:
Self-Organization and Selection in Fvolution.
Biophysical Soc, 1993.

L. Kroc, A. Sabharwal, and B. Selman.
Message-passing and local heuristics as decimation
strategies for satisfiability. In Proceedings of the 2009
ACM symposium on Applied Computing, pages
1408-1414. ACM, 2009.

J. T. Langton, A. A. Prinz, and T. J. Hickey.
Combining pixelization and dimensional stacking. In
Advances in Visual Computing, pages 11: 617-626,
2006.

http://bit.ly/QFHNAk

[20] M. Mézard, G. Parisi, and R. Zecchina. Analytic and
algorithmic solution of random satisfiability problems.
Science, 297(5582):812-815, 2002.

[21] Melanie Mitchell. An Introduction to Genetic
Algorithms. The MIT Press, Cambridge, MA, 1996.

[22] A.E. Nix and M.D. Vose. Modeling genetic algorithms
with Markov chains. Annals of Mathematics and
Artificial Intelligence, 5(1):79-88, 1992.

[23] Martin Pelikan. Finding ground states of
sherrington-kirkpatrick spin glasses with hierarchical
boa and genetic algorithms. In GECCO 2008:
Proceedings of the 10th annual conference on Genetic
and Evolutionary Computation Conference, 2008.

[24] Karl Popper. The Logic Of Scientific Discovery.
Routledge, 2007.

[25] C.R. Reeves and J.E. Rowe. Genetic Algorithms:
Principles and Perspectives: a Guide to GA Theory.
Kluwer Academic Publishers, 2003.

[26] Alexander Rosenbluth and Norbert Wiener.
Purposeful and non-purposeful behavior. Philosophy of
Science, 18, 1951.

[27] B. Selman, H. Kautz, and B. Cohen. Local search
strategies for satisfiability testing. Cliques, coloring,
and satisfiability: Second DIMACS implementation
challenge, 26:521-532, 1993.

[28] William M. Spears and Kenneth De Jong. On the
virtues of parameterized uniform crossover. In R. K.
Belew and L. B. Booker, editors, Proc. of the Fourth
Int. Conf. on Genetic Algorithms, pages 230-236, San
Mateo, CA, 1991. Morgan Kaufmann.

[29] G. Syswerda. Uniform crossover in genetic algorithms.
In J. D. Schaffer, editor, Proceeding of the Third
International Conference on Genetic Algorithms.
Morgan Kaufmann, 1989.

[30] Sewall Wright. The roles of mutation, inbreeding,
crossbreeding and selection in evolution. In
Proceedings of the Sixth Annual Congress of Genetics,
1932.

APPENDIX

A. THE HYPERCLIMBING HEURISTIC:
FORMAL DESCRIPTION

Introducing new terminology and notation where neces-
sary, we present a formal description of the hyperclimbing
heuristic. For any positive integer ¢, let [¢] denote the set
{1,...,¢}, and let B, denote the set of all binary strings
of length ¢. For any binary string g, let g; denote the i*"
bit of g. For any set X, let PX denote the power set of
X. Let S, and SP, denote the set of all schemata and
schema partitions, respectively, of the set B,. We define
the schema model set of ¢, denoted SMy, to be the set
{h:D — {0,1}|D € PU}. Each each member of this set is a
mapping from the defining bits of a schema to their values.

Given some schema v C By, let w(y) denote the set
{i € [{]|Vz,y € v,z; = y;}. We define a schema model-
ing function SMF, : S, — SM, as follows: for any v € Sy,
SMF; maps v to the function h : w(y) — {0,1} such that
for any g € v and any ¢ € w(vy), h(i) = ¢g;- We define a
schema partition modeling function SPMF, : SP, — P! as
follows: for any ' € SP;, SPMF,(T") = m(y), where v € T.
As m(¢) = w(§) for all ¢, & € T, the schema partition model-

ing function is well defined. It is easily seen that SPF, and
SPMF, are both bijective. For any schema model h € SM,,
we denote SMF, ' (h) by [h],. Likewise, for any “schema
partition model” S € P! we denote SPMF, *(S) by [S]..
Going in the forward direction, for any schema v € S;, we
denote SMF,(v) by (7). Likewise, for any schema partition
I’ € SP;, we denote SPMF,(I") by (I'). We drop the £ when
going in this direction, because its value in each case is as-
certainable from the operand. For any schema partition I,
and any schema vy € ', the order of ', and the order of ~ is
(D).

For any two schema partitions I'1,I's € SP,, we say that
T'y and I's are orthogonal if the models of I'1 and I'y are
disjoint (i.e., (I'1) N{T'2) = (). Let I'; and I's be orthogonal
schema partitions in SP;, and let 717 € I'1y and 2 € T’z
be two schemata. Then the concatenation I'1I'> denotes
the schema partition [(I'1) U (I'2)]¢, and the concatenation
~17y2 denotes the schema [h : (I'1) U (I'z) — {0,1}]¢ such
that for any ¢ € (I'1), h(i) = (y1)(¢), and for any ¢ € (I'2),
h(i) = (7y2)(4). Since (I'1) and (I'2) are disjoint, y1y2 is well
defined. Let I'y and I's be orthogonal schema partitions,
and let y1 € I'1 be some schema. Then «.I's denotes the set
{v§ eIz [T2}

Given some (possibly stochastic) fitness function f over
the set By, and some schema vy € Sy, we define the fit-
ness of v, denoted Fv(f)7 to be a random variable that gives
the fitness value of a binary string drawn from the uniform
distribution over . For any schema partition I' € SP;, we
define the effect of T', denoted Effect[T], to be the variance”
of the expected fitness values of the schemata of I'. In other
words,

2

Effect[[] =2~V [B[F)] — 2711 " BFY)
yer £er

Let I'1,T'> € SP; be schema partitions such that (I'1) C
(T2). Tt is easily seen that Effect[l'1] < Effect[l2]. With
equality if and only if Fg) = FW({) for all schemata v; € I'1
and 72 € I'y such that 72 C «1. This condition is unlikely
to arise in practice; therefore, for all practical purposes, the
effect of a given schema partition decreases as the parti-
tion becomes coarser. The schema partition [[I]], has the
maximum effect. Let I' and ¥ be two orthogonal schema
partitions, and let v € I' be some schema . We define the
conditional effect of U given v, denoted Effect[¥|4], as fol-
lows:

2

Effect[¥|y] =2~/ Y™ | B[F)] — 27N " gB[F])
Ppew cevw

A hyperclimbing heuristic works by evaluating the fitness
of samples drawn initially from the uniform distribution over
the search space. It finds a coarse schema partition I" with a
non-zero effect, and limits future sampling to some schema
~ of this partition whose average sampling fitness is greater
than the mean of the average sampling fitness values of the
schemata in I". By limiting future sampling in this way,
the heuristic raises the expected fitness of all future sam-
ples. The heuristic limits future sampling to some schema

"We use variance because it is a well known measure of dis-
persion. Other measures of dispersion may well be substi-
tuted here without affecting the discussion

by fixing the defining bits [21] of that schema in all future
samples. The unfixed loci constitute a new (smaller) search
space to which the hyperclimbing heuristic is then recur-
sively applied. Crucially, coarse schema partitions orthogo-
nal to I' that have undetectable unconditional effects, may
have detectable effects when conditioned by ~y.

B. VISUALIZING STAIRCASE
FUNCTIONS

The following addressing scheme allows us to project a
high dimensional fitness function onto a two dimensional
plot.

DEFINITION 2. A refractal addressing system is a tuple
(m,n,X,Y), where m and n are positive integers and X
and Y are matrices with m rows and n columns such that the
elements in X and Y are distinct positive integers from the
set [2mn], such that for any k € [2mn], k is in X <= k is
notin'Y (i.e. the elements of [2mn] are evenly split between
X andY).

A refractal addressing system (m, 0, X, Y") determines how
the set Bo, gets mapped onto a 2™™ x 2™" grid of pixels.
For any bitstring g € Bamn the xy-address (a tuple of two
values, each between 1 and 2™") of the pixel representing g
is given by Algorithm 3.

Example: Let (h =4,0=2,§ =3, =16,L,V) be the
descriptor of a staircase function f, such that

V=

_ o o
=)

Let A = (m = 4,n = 2,X,Y) be a refractal addressing
system such that Xi. = Li., Y1. = Lo., Xo. = Ls., and
Ya. = La.. A refractal plot8 of f is shown in Figure 4a.

This image was generated by querying f with all 2!¢ ele-
ments of Big, and plotting the fitness value of each bitstring
as a greyscale pixel at the bitstring’s refractal address under
the addressing system A. The fitness values returned by f
have been scaled to use the full range of possible greyscale
shades.® Lighter shades signify greater fitness. The four
stages of f can easily be discerned.

Suppose we generate another refractal plot of f using the
same addressing system A, but a different random number
generator seed; because f is stochastic, the greyscale value
of any pixel in the resulting plot will then most likely differ
from that of its homolog in the plot shown in Figure 4a.
Nevertheless, our ability to discern the stages of f would
not be affected. In the same vein, note that when specifying
A, we have not specified the values of the last two rows of X
and Y'; given the definition of f it is easily seen that these
values are immaterial to the discernment of its “staircase
structure”.

On the other hand, the values of the first two rows of X
and Y are highly relevant to the discernment of this struc-
ture. Figure 4b shows a refractal plot of f that was ob-
tained using a refractal addressing system A’ = (m =4,n =
2, X' Y') such that X3, = Lq., Y/, = Lo., X5 = Ls., and

8The term “refractal plot” describes the images that result
when dimensional stacking is combined with pizelation [19].
9We used the Matlab function imagesc ()

Algorithm 3: The algorithm for determining the (z, y)-
address of a chromosome under the refractal addressing
system (m,n, X,Y). The function BIN-TO-INT returns
the integer value of a binary string.

Input: g is a chromosome of length 2mn

granularity < 2™" /2"

z+1

y<+1

for i < 1 to m do
x + z + granularity * BIN-TO-INT (Ex,,(g))
y < y + granularity * BIN-TO-INT (Ey;, (g))
granularity < granularity/2"

end

return z,y

Y4. = L,.. Nothing remotely resembling a staircase is visible
in this plot.

The lesson here is that the discernment of the fitness stair-
case inherent within a staircase function depends critically
on how one ‘looks’ at this function. In determining the
‘right’ way to look at f we have used information about the
descriptor of f, specifically the values of h,o0, and L. This
information will not be available to an algorithm which only
has query access to f.

Even if one knows the right way to look at a staircase
function, the discernment of the fitness staircase inherent
within this function can still be made difficult by a low value
of the increment parameter. Figure 5 lets us visualize the
decrease in the salience of the fitness staircase of f that
accompanies a decrease in the increment parameter of this
staircase function. In general, a decrease in the increment
results in a decrease in the ‘contrast’ between the stages of
that function, and an increase the amount of computation
required to discern these stages.

C. ANALYSIS OF STAIRCASE
FUNCTIONS

Let ¢ be some positive integer. Given some (possibly
stochastic) fitness function f over the set B,, and some
schema v C B, we define the fitness signal of ~, de-
noted S(v), to be E[F] — E[F‘éf[)] Let vv C B, and
v2 C B, be schemata in two orthogonal schema partitions.
We define the conditional fitness signal of Y1 given 2, de-
noted S(71 | 7v2), to be the difference between the fitness sig-
nal of v1vy2 and the fitness signal of 2, i.e. S(y1|7y2) =
S(7172) — S(72). Given some staircase function f we denote
the i*" step of f by |f]|: and denote the i*" stage of f by
[f1.

Let f be a staircase function with descriptor
(h,0,8,£,L,V). For any integer ¢ € [h], the fitness
signal of | f]; is one measure of the difficulty of “directly”
identifying step ¢ (i.e., the difficulty of determining step
i without first determining any of the preceding steps
1,...,i—1). Likewise, for any integers i,j in [h] such that
i > j, the conditional fitness signal of step i given stage j
is one measure of the difficulty of directly identifying step
1 given stage j (i.e. the difficulty of determining | f|; given
[f1; without first determining any of the intermediate steps

L es L Jimn)-

256

192

128

64

64 128 192 256

256

197 =

128

64 E

64 128 192 256

Figure 4: A refractal plot of the staircase function f under the refractal addressing systems A (left) and A’

(right).

256

192

128

64

64 128 192 256

256 [

192

128

64

64 128 192 256

Figure 5: Refractal plots under A of two staircase functions, which differ from f only in their increments—1

(left plot) and 0.3 (right plot) as opposed to 3.

By Theorem 1 (Appendix C), for any ¢ € [h], the uncon-
ditional fitness signal of step i is

é
0(i—1)

This value decreases exponentially with ¢ and o. It is rea-
sonable, therefore, to suspect that the direct identification
of step ¢ of f quickly becomes infeasible with increases in
i and o. Consider, however, that by Corollary 1, for any
i € {2,...,h}, the conditional fitness signal of step i given
stage (i — 1) is 0, a constant with respect to i. Therefore, if
some algorithm can identify the first step of f, one should
be able to use it to iteratively identify all remaining steps in
time and fitness queries that scale linearly with the height

of f.

LEMMA 1. For any staircase function f with descriptor
(h,0,6,¢,L, V), and any integer i € [h], the fitness signal of
stage i is 9.

PROOF: Let = be the expected fitness of B, under uniform
sampling. We first prove the following claim:

CLAIM 1. The fitness signal of stage i is i0 — x

The proof of the claim follows by induction on i. The base
case, when i = h is easily seen to be true from the definition
of a staircase function. For any k € {2,...,h}, we assume
that the hypothesis holds for i = k, and prove that it holds
fori =k—1. For any j € [h], let I'; € SP,; denote the schema
partition containing step ¢. The fitness signal of stage k — 1

is given by

o ST+ Y

P eTE\{Lflx}

ko —x 2°-1 0
=% + % <5(k—1)—ﬁ—x>
where the first term of the right hand side of the equation
follows from the inductive hypothesis, and the second term

follows from the definition of a staircase function. Manipu-
lation of this expression yields
6+ (2°—1)0(k—1)— 86 — 2°x
20
which, upon further manipulation, yields (k — 1)0 —
This completes the proof of the claim. To prove the
lemma, we must prove that x is zero. By claim 1, the fit-

ness signal of the first stage is § — x. By the definition of a
staircase function then,

xié—m+20—1 _ d
T 20 20 20 —1
Which reduces to
x
20

Clearly, z is zero. O

S([f1r-1)

r = —

COROLLARY 1. For any i € {2,...,h}, the conditional
fitness signal of step i given stage i — 1 is &

PRrROOF The conditional fitness signal of step i given stage
i — 1 is given by

S| TfTi-1)
=S(1f1:) = S([fli-1)

= (i6 — (i — 1)d)
=460

THEOREM 1. For any staircase function f with descriptor
(hy0,6,0,€,L, V), and any integer i € [h], the fitness signal
of step i is §/2°071).

PRrROOF: For any j € [h], let A; € SP,; denote of the partition

containing stage j, and let I'; € SP, denote of the partition
containing step j. We first prove the following claim

CLAIM 2. For any i € [h],

S(&) =—io
ge AN{[fT:}

The proof of the claim follows by induction on i. The proof
for the base case (i = 1) is as follows:

> s@-@ -0 ()=
e M\{lf11}

For any k € [h — 1] we assume that the hypothesis holds for
i = k, and prove that it holds for i = k + 1.

5(6)

§E€ A1 \{[flr+1}

-z

el 1 \{flk+1}

- ¥

€T 1 \{[f1r+1}

SUTey)+

PR

EEMN{[fIk} €Tkt

STFd)+ Y > Sy

peTki1 €M N{[fk}

= (2°=1)S([fTe)+2° D DR-(3)

§EMN{[fk}

where the first and last equalities follow from the definition
of a staircase function. Using Lemma 1 and the inductive
hypothesis, the right hand side of this expression can be seen

to equal
(2°—1) [ké — NI 2°ké
20 —1

which, upon manipulation, yields —d(k + 1).

For a proof of the theorem, observe that step 1 and stage 1
are the same schema. So, by Lemma 1, S(| f|1) = 6. Thus,
the theorem holds for ¢ = 1. For any i € {2,...,h},

S(Lfm:@o)% s+ S S

gen; A \{[fli=1}

:ﬁ s+ S sE

€N A\{[fli-1}

where the last equality follows from the definition of a stair-
case function. Using Lemma 1 and Claim 2, the right hand
side of this equality can be seen to equal

i5 — (i —1)8
(20)7L71

0
- 920(i—1)

	Introduction
	The Hyperclimbing Heuristic
	Symmetries of a UGA
	Proof of Concept
	UGA Specification
	Performance of a UGA on a class of Staircase Functions
	Symmetry Analysis and Experimental Confirmation

	Validation
	Validation on MAX-3SAT
	Validation on an SK Spin Glasses System

	Conclusion
	References
	The Hyperclimbing Heuristic: Formal Description
	Visualizing Staircase Functions
	Analysis of Staircase Functions

