Protective function of allergies against cancer proliferation within coastal communities.

Allergies have surged in coastal communities, prompting inquiry into adult-onset allergies like IgE hypersensitivity to common foods rich in tropomyosins. Communities in Nagoya, Japan experience some of the highest shellfish allergy prevalence, yet also consume some of the highest rates (Woo and Bahna 2011). This phenomenon challenges the notion of childhood microbial exposure to the maintenance of shellfish allergies – why adults develop these allergies despite ongoing exposure to shellfish proteins like tropomyosin. Reimagining IgE hypersensitivity as a byproduct from secondary processes rather than direct selective pressure, should be considered. Allergy expression and cancer suppression contains a positive regulatory overlap in mechanisms, cross-reactivity; but to the exact degree could be further looked at by correlating incremental IgE levels with cancer biomarkers (CAPs and CEA). IgE’s protective function against cancer may also explain if IgE hypersensitivity has been shaped by selection, through indirect protective or adaptive roles, specifically in environments where fish is regularly consumed.

(source: https://epsilogen.com/why-ige/)

[Keywords: Immunoglobulin E, AllergoOncology, IgE effector functions, Aichi Center]
This assignment is in accordance with university regulations /s/