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Photoelectrochemical (PEC) water splitting is a promi “hnology to generate green hydrogen energy from
solar light. However, the water oxidation process limits th ciency of overall water splitting. To overcome the
limitation, it needs to understand some critical parameters in a PEC water-splitting process and precise strategies
to select, design, prepare, and modify the materials for photoelectrode. A fundamental consideration in selecting
materials for a PEC cell should include a thermodynamic requirement, appropriate band structure, high crys-
tallinity and surface area, high stability, and low cost. The interested photoanode semiconductors with low cost
and toxicity are discussed with various modification strategies, such as e modification with nano-
structuring, co-catalyst, and surface passivation, The strategies with heterujﬁ, Z-scheme charge transfer,
and gradient doping with cations and anions are also presented to improve the charge transfer and lower its
recombi@Eion rate. In addition, the recent application of ternary oxide-based photoanodes is briefly reviewed.

Finally, the challenges and prospects for the future development of photoanodes are presented.

1. Introduction

Presently, global energy demands haB been excruciatingly
increasing, with nearly 83% of total energy still based on traditional
fossil fuels, such as coal and petroleum [1]. It is predicted to be more
than 30 - 50 TW by 2050 to accommodate the rapid economic growth
because of global population inflation. However, the diminishing
fossil-fuel reserves that were ample and easy to obtain are no longer
support current production and living needs. [2| Simultaneously, the
massive carbon-based fuel consumption considerably harms our envi-
ronment. Therefore, it is urgent to seek sustainable clean energy to
relieve the environmy pollution and status quo of the energy crisis.
Harnessing solar lig ergy is preferable as the total energy of irra-
diated solar light on land per year (3.6 x10° TW) far excee&le pre-
dicted global energy (50 TW). One of the methods is converting
solar-light energy into chemical energy with hydrogen as the energy

carrier. Hydrogen energy is considered an excellent sustainable resource
since its combustion product is only water. Therefore, solar-derived
hydrogen energy can be utilized to simultaneously solve energy and
environmental issues due to its high energy density, as shown in Fig. 1.
However, most of the hydrogen production is currently done with
non-renewable methods, such as natural gas and coal reformation, coke
ovens, chlor-alkali process, and propane dehydrogenation [3]. All the
hydrogen production methods with advantages and disadvantages are
indicated in Table 1. A green hydrogen gas generation method should be
conducted with a water-splitting process. There are several ways to
generate hydrogen from water, such as photocatalysis, electrolysis, and
photoelectrocatalysis. Among those methods, photoelectrochemical
water splitting (PEC-WS5) is promising to be scaled up. The reason is that
mimicking the natural photosynthesis process in which the photo-
electrode cells C-WS play similar roles in a photoreaction in the leaf
is sustainable, as shown in Fig. 2a. During the PEC-WS process, the PEC

* Corresponding author at: Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keehing

road, Taipei 10607, Taiwan.
E-mail address hairus@unprimdn.acid (H Abdullah).

.: /doi.org/10.1016/j jece. 2023. 109356

Received 26 November 2022; Received in revised form 17 January 2023; Accepted 20 January 2023

Available online 21 January 2023
2213-3437/© 2023 Elsevier Ltd. All rights reserved.




H. Abdullah et al.

-35

~120{ i ¥4 .

-30
100+

80+

60+

40

Gravimetric energy density (MJ kg
Volumetric energy density (MJ LY

1. Lower heating value (LHV) gravimetric and volumetric energy densities
ndard fuels.
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cells should efficiently hamess the solar light enerzy to generate
hydrogen as the energy carrier. Many works in the PEC-WS field study
the cathodic and anodic cells separately, which allows for better
screening and rational development of catalysts. Some reported that the
PEC hydrogen evolution coupled with organic degradation required an
external bias with low photocurrent densities [4-8]. However,
mimicking natural photosynthesis requires high performances of pho-
toanode and photocathode with a free external bias during the photo
reactions [9-14]. Therefore, it is crucial to understand the current
strategies for improving the PEC-WS process.

As the water oxidation process requires four electrons in the reaction,
the mechanism to evolve oxygen gas is more sluggish than the proton
reduction reaction with only two electrons. Therefore, more work has
been done to improve photoanodes than photocatho n a water-
splitting process, as indicated in Fig. 2b. Following the pioneering
work of Fujishima and Honda in 1972 [16], numerous research efforts
have been conducted to increase the solar-to-hydrogen (STH) er—
sion yield [17-19]. STH conversion efficiency depends on some critical
factors in the PEC-WS processes, including light absorption, separation
degree of photocarriers, and chemical stability [20-22]. Nano-
structuring the photoanodes can enhance solar light harvesting, increase
the contact area, and reduce the diffusion length of photocarriers,
leading to higher STH conversion efficiency. Different nanostructures
such as 3D inverse opals [23,24], 2D nanosheets [25,26], 1D nanorods
[27,28], and nanowires [29| demonstrate high performances. However,
a single semiconductor is challenging to satisfy all the critical factors in
the PEC-WS process. For irmce, low-bandgap o-Fe,04 [20] and BiVO,
|31] can be sensitizers for wide-bandgap semiconductors, such as ZnO,
Sn0,, and WO, [32,33]. As a result, the heterojunction formation be-
tween them can increase the light absorbance, photocarrier separation,
and STH conversion efficiency [34,35].

The present review highlights the promising PEC-WS process for
overcoming energy and environmental issues and essential strategies in
developing photoanodes. Common semiconductors with low cost and
toxicity are discussed for various modification strategies, such as surface
modification with nanostructuring, co-catalyst, and surface passivation.
Furthermaore, the cocatalysts with MOF, LDH, oxyhydroxide, CoOx, and
CoPi, oxygen vacancy-based metal oxides, are also elucidated. In addi-
tion, the strategies with heterojunction, Z-scheme charge transfer, and
gradient doping with cations and anions are also presented to improve
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Table 1
Various methods of hydrogen production with their advantages and disadvan-
tages [10,15].
Methods of Ad g Disadvantag Efficiency  Cost
hydrogen [$/Kg]
production @
Thermal Well- CO, a5 a 60 -75 148
reforming established byproduct due
technology and to the fossil fuels
existy
infra. ure
Steam Well-developed — Generating CO 74 -85 227
reforming technology with  and CO,
existing
infrastructure
Partial Well- Producing beavy 60 -75 1.48
oxidation established oils and
technology petroleum coke
Fhoto Abundant, necessity of 30— 40 1.77-2.05
fermentation  cheap feedstock nsiderable
and neutral COy  volume of
reactor,
O-sensitivity,
fluctuating Hy
yields because of
feedstock
impurities,
seasonal
gadl ability, and
a tion of tar
Biophotolysis Consumed COy, LowyieldsofH,, 10-11 213
Dark produced O, a5 sunlight needed, 60 - 80 2.57
fermentation  a byproduct, large reactor
working under required, O
mild conditions  sensitivity, high
Simple method,  cost of material
H; produced Fatty acids
without light elimination, low
yields of Ha, low
efficiency
Gasification Organic waste The necessity of 30 - 40 1.77-2.05
waters, COy a considerable
-neutral. volume of
Abundant, reactor,
cheap feedstock sensitivity,
and neutral CO, &tuaﬁng Ha
yields because of
feedstock
impurities,
seasonal
availability, and
a formation of tar
Electrolysis Established Storage and 60 - 80 10.30
technology, transportation
ZEro-emission, problem
existing
infrastructure,
Oy asa
by product
Photolysis Oy asa Low-efficlency 8-10 0.06
by product, photocatalytic
abundant material
stock, no
ai‘;s[om a
Pyrolysis Abundant, Tar formation, 35-50 1.59-1.70
cheap feedstock  fluctuating Ha
and CO, amount because
-neutral of feedstock
impurities, and
seasonal
availability
Thermolysis Clean and High capital 20-45 7.98-8.40
sustainable, Oy costs, elements
by product, toxicity,
copious corrosion
feedstock problems
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the charge transfer and lower its recombination rate. Furthermore, the
temary oxide-based photoanodes as the alternative design of photo-
anode materials are briefly discussed. Recent works with different re-
action conditions and promising electrolytes to optimize the oxidation
capability of photoanode are also list tables to indicate the material
development in photoanode. Finally, the challenges and prospects for
the future development of photoanodes are presented.

2. Critical parameters of PEC-WS processes

2.1__General requirements in photoredox reactions

21

A PEC cell consists of a photoanode, photocathode, and electrolyte.
The photoanode is connected to the photocathode for electron transfer
with or without external bias, depending on the light absorbance,
favorable charge carrier dynamics, and le band structure [36].
Common PEC cells have a configuration of an n-type semiconductor for
photoanode and a p- semiconductor for photocathode due to their
band bending during light illumination, as shown in Fig. '1 ,38]. An
energetic photoanode and photocathode conduct water oxidation and
reduction reactions, respectively. To allow the surface redox reaction,
the photogenerated electron and holmuld comply with the minimum
thermodynamic energy required for oxidation uction reactions.
Generally, the position of a conduction band (CB) of semiconductor
must be more negative than that of the reduction potential of a partic-
ular species roceed with the reduction reaction. Meanwhile, the
position of a valence band (VB) of semiconductor must be more positive
than that of the oxidation potential of a species to conduct the oxidation
reaction. Ideally, the photocarriers will diffuse to electrode surfaces for
chemical reaction; Otherwise, they would be lost through the charge
recombination process. As a result, some semiconductors are incapable
of evolving hydrogen due to the neg CB position. Fig. 2b indicates
single semiconductors with different VB and CB positi elative to the
standard water oxidation and reduction potentials. As the CB position is
more positive than that of the water reduction potential, the single
phases of 5n0s, W03, Fes0s; and ternary oxides such as CuWOs,
ZnFes04, BiFeOs, FeaWOs can not evolve hydrogen. However, those
single-phase semiconductors are reliable for oxygen evolution catalysts
due to the appropriate VB position relative more positive to the water
oxidation potential. Therefore, many works provide efforts to overcome
the drawbacks of those materials as photocells [12,39-41]. On the other
hand, those materials with CB positions higher than hydrogen reduction
potential, such as TiOs, Zn0, FeV0s, CuFes04, MgFes04 and CdS are
suitable for photocathodes [42-44].

The specific WS reactions on photoanode and photocathode after
photoexcitation are as follows:

(a)

of Envir | Chemical Engineering 11 (2023) 109356
Photocathode: 2 H™ + 2e H; (acid)
2H>0 + 2¢ — H: + ~ (alkaline) 1)

Photoanode: 2H>0 + 4h™— 05 + 4H" (acid)
40H™ + 4h*— 05 + 2H,0 (alkaline) (2)

Overall reaction: 2H:0 — 2H: + O» (3)

2.2, Essential steps in a PEC-WS process

The basic process of PEC-WS could be divided into three main steps.
The first step is indu light illumination, in which electron and hole
pairs are generated if the photon energy is larger than the bandgap of
electrode materials. After the photoexcitation process, the second step is
the photocarriers would be separated or recombined depending on
many factors, such as carrier lifetime, conductivity, temperature, surface
defects, e@‘ he third step is the surface redox reactions on electrodes
[51,52]. Light absorption can be tuned by modifying the electrode
morphology, thickness, and bandgap [53-55]. Photocarrier separation
process after the photoexcitation is crucial and can be ruled by element
doping [56.57], incorporating d [58.59], and heterojunction for-
mation [60-62]. As compared to the hydrogen evolution reaction (HER)
on the photocathode, the oxygen evolution reaction ) on the pho-
toanode is a sluggish reaction that utilizes a four-electron and
four-proton transfer process. The slow reaction can be significantly
alleviated by loading a cocatalyst [63-65]. During the PEC-WS process,
separation and recombination between photogenerated electrons and
holes are competitive. Appropriate amounts of doping and defects could
change the conductivity of the electrode materials to promote charge
transfer (66,67 .

2.3. Basic consideration in selecting electrode materials

A fundamental consideration in selecting materials for water split-
ting should include several factors: potential requirement, appropriate
band structure, high crystallinity and surface area, high stability, and
low cost. Under a standard condition, the WS reaction would only occur
if the potential difference between the electrodes exceeds 1.23 eV with
AG®= 237.1 Kj/mol. It is why the combined bandgap of semiconductors
should be larger than 1.23 eV. The energy loss is considered as over-
potential at electrodes and ionic conductivity loss in electrolytes. The
current density also increases with the increasing applied voltage,
higher than 1.23 V. The excess voltages shown with linear sweep vol-
tammetry (LSV) curves in Fig. 4a are higher than oxidation and reduc-
tion potentials called overpotentials (nygg or Nogg). The overpotential

(b)
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Fig. 2. (a) Application of PEC WS cells to support hydrogen fuel station and (b) numbers of published research articles indexed by Scopus with the search keywords

of photoanodes or photocathodes water splitting.
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Fig. ) Schematic drawing of n-and p-type semiconductors for PEC half-cells u.ndl illumination with Pt as a counter electrode, in which it is assumed that
their CB and VB positions are more negative than that of water reduction potential and more positive than that of water oxidation potential, respectively. (b) CB and

VB positions of common semiconductors used for PEC-WS process [45 501,

(a) 1 (ma/em?)

Ecathode Eanode

1.23 eV

rlHER nOER

(b) ] (masem?)

Ephotocathode Ephotoa node

VPECvWS cell

nHER 1.23 eV rlOER

Fig. 4. Polarization LSV curves for (a) anode and cathode in electrocatalysis and (b) photoanode and photocathode in PEC-WS with simulated solar-light

illumination.

values are crucial indicators to determine the performances of water-
splitting cells. In this case of the water-splitting process, if the elec-
trodes are photoactive materials, the overpotentials will be reversely
shifted. The onset potential of a light-illuminated cathode will be more
positive than 0 Vgyg and that of an anode will be less than 1.23 Vg,
The early onset potential indicates that the light has been harnessed for a
water-splitting process with lower electrical potential. Fiz. 4b shows
typical LSV curves of photoanode and photocathode, in which the onset
potentials of photocathode and photoanodes are positively and nega-
tively shifted, respectively. As a result, the photoanode and photo-
cathode will generate the areas in Fig. 4b, indicating a similar fill factor
(FF} in solar-cell work to determine the efficiency of a PEC cell. In
addition, the intercept tween the photocathode and photoanode
polarization curves is an operational voltage of the PEC cell during the
water-splitting process.

2.4. Metrics as the indicators of PEC cell performances

The performances of PEC cells are determined with different metrics
of electrochemical measurements. Most of the metric indicators related
to photoanode as the rate-determining electrode are to assess water
oxi eaction. Generally, the cell efficiency is e ted with inci-
dent photo-to-electron conversion efficiency (IPCE), solar-to-hydrogen
conversion efficiency (STH), applied bias photon-to-current efficiency

ABPE), Faradaic efficiency, onset potentials, and the stability of pho-
htmdes. A measurement of a PEC cell should be built with a three-
electrode system consisting of work, reference, and counter electrodesin
a particular electrolyte under a solar-light simulator to examine the
electrochemical properties of photoelectrodes. IPCE and ABPE are the
most crucial metrics for photoanode performances. IPCE is to measure
the quantum efficiency of photoanode at different wavelengths. It is
related not only to light absorption but also to charge separation,
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transport, and transfer at photoanode/electrolyte. During the IPCE
measurement, a certain monochromatic light with a particular wave-
length is used to excite the electron from VB. Simultaneously, the
external bias is applied to a cell to measure the passing photocurrent,
which is facilitated with LSV measurement (J-V curves). However, the
IPCE photocurrent is observed with external bias at 1.23 V. The IPCE
can be simply calculated based on Eq. (1). Furthermore, to indicate how
efficient the applied external bias on photoanode below 1.23 V in the
presence of light ill tion, ABPE is calculated based on Eq. (2). The
calculation is done by assuming a 100% Faradaic efficiency on the
photoanode. ABPE can be directly calculated from J — V curves by
substituting the photocurrent during the light illumination with corre-
sponding external potential bias.

12400 T ‘J' s ‘I'

[5CE _L‘M +100% (m
Tog| x (123 — V)

ABPE — M + 100% (2)

In which 2 is the wavelength of light illumination, ljgn is the
photocurr der @i llumination, I, is the photocurrent without
light illw ion, and P is the incident light power density (for
example, a simulated solar light AM 15G, 100 mW/cm ). The
released gases (H, and O,) from electrodes can be measured to deter-
mine the Faradaic effi v to prove the water-splitting process has
occurred on a PEC cell. The Faradaic efficiency in PEC cell is mainly to
compare the experimental and theoretical gas evolution from photo-
anode and calculated with Eq. (3).

evolution

St TA T
LN,

Oxygen anrount

Faradaicefficiency = [ x 100% (3)

In which oxygen evolution amount is obtained in a molar unit, J
is the photocurrent ty in the light illuminated condition, A is the
area of photoanode, T is the reaction time (s}, e is the charge of an
electron (1.6 x Tt C), and N is the Avogadro number. The critical
event in the gas evolution experiment is the coverage of evolved gaseson
photoelectrodes. It should be removed immediately to minimize the
ionic conductivity loss due to lower mass transport and eliminate the
light blocking by bubbles. One of the appropriate ways is increasing the
electrolyte concentration. However, the high electrolyte concentration
will cause photo corrosion at extremely high or low pH. To briefly check
the performances of photoanodes, it can be observed based on the
following factors: [68].

20 T T
{a] (b) band gap <50 mit
i 50-1V
; 154 __.-.GaInP o
B T perovsiie o
g1y *Cae  cuoe o,
P 5® -
‘H_I_;I’_h“ 123 Vi £ gl B8 ;s = asice _ofe0, L
-l M & T
0.5 tanend: ]
z g PV call
" a PEC cathode {protected)
oH olo- g g PEC anode (protected)
od B g 004 —<Z ; e
Ak 1.0 15 20 25 30

Joumal of Envir | Chemical Engineering 11 (2023) 109356
. If the photocurrent onset is cathodically shifted;

. If a high photocurrent density plateau is obtained;

. If the greater fill factor area is observed;

. If long-time stability is noticed

oW b e

In addition, the STH efficiency is a conversion measure by comparing
the energy to evolve hydrogen and the energy of incident light on
photoddes. By assuming the PEC-WS process delivers a stoichio-
metric water splitting, the STH efficiency can be calculated, as expressed
in Eq. (4).

amount of Hiper second x 2374
STH = el 100% )
P & Area

In which the amount of Hs per se is the rate of Hs production,
the Gibbs Free energy is 237 Kj/mol, P is the incident light intensity with
AM 1.5G at 100 mW/cm?, and the area is the immersed surfac
photoanode in the electrolyte during the WS process. Furthermore, one
of the critical parameters in PEC cell is the band structure positions of
photoanodes and photocathodes that provide a suitable photovoltage to
straddle the water redox potentials, as shown in Fig. 5a. After photon
energy excites the electron to CB on photoanode, the accumulated
electrons will transfer to the photocathode, which induces the Fermi
level pins to water oxidation potential due to the hole as the majority
carrier at the interfaces. Th ed Fermi level on photoanode surfaces
facilitates the hole transfer for water oxidation. On the other hand, the
Fermi level in photocathode will pin to water reduction potential to
facilitate the electron for HER. Some semiconductors that used for

hotoanodes and photocathodes are indicated in Fig. 5b. The diagram
b\rs the utilization of photovoltages with different photoelectrodes
close to the Shocm—Queisser (SQ) limit in the interfaces of semi-
conductor/liquid. Photovoltage benchmarks for photoelectrochemical
and solar-cell materials as a function of the optical bandgap. Photo-
voltage values for PEC electrodes are taken from published onset po-
tentials, with photocathodes referenced to Eyggp® (0 Vpyg), and
photoanodes referenced to Eggg” (1.23 Vgyg). The diagonal lines
represent the material bandgap, the SQ photovoltage limit, and the 5Q
limitat — 1 V.

2.5. Stability of photoanodes

The essence of photoanode stability depends on the semiconductor
materials. The photoanode materials have been explored, including
metal nitrides, metal sulfides, metal oxides, and other organic materials
[70-72]. When the photoanode material oxidizes during a PEC-WS

band gap (eV)

ig, 5. (a) Appropriate bandgap positions of photoanodes and phmcmndes to provide sufficient photovoltage (Vo + Vinz) to drive the WS process. (b) Pho-
%Imges of different semiconductors as a function of bandgap with the Shockley-Queisser (SQ) limit in a semiconductor/liquid junction type device.

Reproduced from Ref. [59] with permission from the Royal Society of Chemistry.
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process, the stability of photoanode will be degraded. The@toanode
material in a PEC-WS process experiences three main steps such as light
absorption, bulk separation, and surface catalytic processes. In this
condition, there are common points in the degradation of photoanode
materials, regardless of the types of semiconductor materials. The major
issues that cause the instability of photoanodes during the PEC test are
written as follows: Firstly, the photogenerated holes dissolve or oxidize
the photoanode materials. It is related to the existing holes on photo-
anode surfaces with an equivalent of the loss of electrons in the bonding
orbital of VB. This phenomenon indicates a weakening of chemical
bonds between atoms, making these related atoms easily dissolve
through interaction with a reagent in solution. As a result, a low
bandgap material has a higher carrier concentration, making them
susceptible to photo corrosion during the water-splitting process [29,
73]. That is why narrow-bandgap photoanodes are very unstable
compared to wide-bandgap photoanodes [74,75]. Therefore, selecting
materials with a particular bandgap and light absorption capability is
essential to achieve a stable photoanode. Secondly, the photoanode
materials should be chemically stable in electrolytes as the photoanode
always contacts with electrolytes during the PEC test. Most semi-
conductors are unstable in acid electrolytes; thus, selecting an electro-
lyte for a PEC system is essential for cell stability [ 76 |. Relatively stable
electrolytes such as KOH, Na,5S0,, borate, and phosphate buffers have
been applied in the PEC test. Thirdly, the stability of photoanodes is
related to the self-oxidation potential with a relative position to the
oxidation potential (&) of a photoanode. In a icular condition,
after band alignment, the photo corrosion ofsemicﬁctom depends on
the reduction and oxidation potentials relative to the conduction band
minimum (CBM) and valence band maximum (VBM) of the material,
respectively [77]. Consequently, only a specific semiconductor has an
appropriate energy band position that has a better stability performance.
Fourthly, during the PEC testing, the generated holes are used to oxidize
water molecules at the catalyst surfaces. However, suppose these holes
are not utilized in time and accumulate at the interfaces due to some
reasons (surface states), the photoanode will be oxidized by the accu-
mulated holes, causing deactivation of the photoanode [75]. The photo
corrosion of semiconductor materials is regardless of metal oxide or
sulfide, as the example: the instability BiVO4 during the PEC test is also
occurred when V is dissolved [79].

There are some instability test methods in a PEC process. The most
direct & tion is applying the photoanode in a long-term PEC test to
observe if there is a significant change in the photocurrent density. Some
attributes can be observed after and before a PEC process: (1) The
photocurrent density (J) - potential (V) or J vs. V curve of a stable
photoanode will not change after a long-term test; (2) During the testing
of constant current or voltage, the curves of J vs. t (time) and J vs. t
(time) will be constant for a long time test; (3) Simultaneously, the
generated hydrogen and oxygen rates are not altered; (4) Surface
morphology, crystal structure, chemical states, and element contents of
photoanode do not significantly change. The excellent stability of pho-
toanodes indicates all the above characteristics during a PEC test. Be-
sides comparing the J values before and after a PEC test, HER and OER
performances should be unaltered to indicate favorable stability.

2.6. Standard examination of photoanode stability

Various kinds of characterization methods have been reported.
Moreover, the characterization with electrochemical (EC) techniques
has been widel in this field [80]. Bisquert et al. utilized EC
characterization to study the surface sta Fe,0, photoelectrode in
detail [81]. Materials identification with scanning electron microscopy
(SEM), transmission electron microscopy (TEM), X-ray diffraction
(XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS),
and inductively coupled plasma spectroscopy (ICP) are commonly
conducted for photoelectrode. Meanwhile, the performance test is done
with J-V curves, I-t curves, electrochemical impedance spectroscopy

Joumal of Envir 1 Chemical Engineering 11 (2023) 109356
(EIS), IPCE, and ABPE. 16 ]

In general, the stability of PEC devices is determined by photocurrent
density, solar-to-hydrogen efficiency, and the onset potential of photo-
electrodes before and after long-term test [82]. More specific or direct
evidence can be expressed with [-t curve or chronoamperometric plot.
Scheme la indicates a particular example of [-t curve after a PEC test.
The shows samples A and B with different stability properties.
After a period of time, sample A exhibits a constant current density and
sample B decays rapidly, indicating its stability is not good. However,
the stabill photoanode may be influenced by the applied external
potential during the PEC test [53]. As a result, the I-t curve will be
smoother if the applied bias is smaller. In this regard, the influence of
external bias should be noted when investigating the photoanode sta-
bility. Generally, the I-t curves will be done at 1.23 Vi for a PEC-WS
process [54,85]. In addition, the stability also can be observed with a J-V
test on the photoanode by comparing the curves before and after a
long-term PEC process [ 86 |. The onset potential, current density (J), and
the curve states of photoanodes before and after the PEC test are crucial
with this J-V measurement. A stable photoanode will exhibit consistent
J-V curves. Scheme 1b shows an example for samples A, B, A’, and B
after a long-term PEC test. Samples A and A’ indicate a similar J-V
curves, implying that sample A is stable. In another case for samples B
and B, there is a different trend of curves after a long-term test. The
phenomena may be caused by photocorrosion of the sample. Some
characterizations with EC techniques can corroborate the photoanode
stability, such as ABPE and IPCE tests. Nevertheless, the EC test can also
deliver a wrong message to us with a stable J-V curve since the
morphology of photoanode may be changed; however, it is not revealed
with the EC test. For instance, the morphology may change to porous
after a long-term use and the performance of a photoanode is stable.
indicating the actual performance of the photoanode should a
degraded as the porous property should enhance the performance. If the
J-V curve of the photoanode remains unchanged, it will result in a
misjudgment of photoanode stability. As a result, the characterization
with different measurements are required to ensure the stability of a
photoanode after a long-term PEC test.

3. Essential strategies to design photoanodes

As the material selection for photoanodes is limited by the band
structure position, not too many semiconductor materials can comply
with the requirements. Some modifications and treatments are consid-
erably needed to improve the existing photoanodes. The current stra-
tegies for improving photoanodes involve surface modification, light
trapping efficiency, heterojunction formation, and doping. The major
P se of the different strategies is to enhance charge separation and
tr% after photoexcitation.

st OER kinetics is of equal importance besides the photocarrier
separation. Surface modification on the main photoanode using prom-
ising electrocatalysts such as IrQ,, CoO,, NiQO, spinel structures
(NiFe,04, Co404, etc.), and amorphous Co-Pi czu'a'lpmve OER kinetics
[88-94]. The purpose of surface modification is to suppress the charge
recombination in the bulk and energy attributed to the
surface-trapped states. One of the simple ways is to create a buried p/n
junction at the photoanode surface. This method is helpful for thermo-
dynamically removing ph@g¥zenerated holes from the bulk photoanode
material and storing them in the surface p-type material for a prolonged
period. A conformal deposit of an ultrathin p-type layer can also effec-
tively passivate the surface-trapped electrons to reduce the likelihood of
surface charge recombination. Furthermore, the ultrathin ptypa)ner
deposited on the electrode allows holes to migrate efficiently to the
electrolyte with a slight resistive loss within the electrode. The NiO
material is particularly auspicious among various p-type materials due
to its appropriate valence band position [95]. Some current strategies,
such as nanostructuring, co-catalyst, and surface passivation, are
observed to efficiently make the charge separation. In addition, material
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modification with heterojunction and gradient doping is critical for
charge transfer.

3.1. Nanostructuring

One of the main issues in charge separation is the short-length
diffusion that suppresses the development of a thick layer of photo-
anode material, especially for hematite (2-3 nm) [96]. Besides over-
coming the short-length diffusion, the surface area of ctured
porous particles or grain size of anode materials will also enhance the
charge separation. As seen in Fig. 6, the nanostructured a-Fes0j thin
films have some appropriate advantages over planar a-FesOj thin films:
(1) Increasing the light pathway for completing light absorption; (2)
Holes can be facilitated to reach the electrolyte interface with a tiny
diameter of a porous 1 nostructure; (3) The tiny nanostructure will
provide an enormous specific surface area for water adsorption and
activation [97.98].

The thickness of a planar thin film should be in the range of space
charge region width (Ws:). If the holes are generated far from the sur-
face, they prefer recombining with electrons rather than oxidizing
water. The space charge region also depends on the impurity of semi-
conductor materials, as defined in Eq. (5).

Ea 172

Wee=(2 x Adpg-x & x

)

ex
In which, Agy- is the potential drop of space-charge region and N is
the doping density. When the doping density decreases, W, increases

(5)

(a)

,, Planar surface

2H,0 + 4h?

Limited at < 5 nm for hole diffusion

from nanometer to microns and dlgree of band bending also in-
creases, as indicated in Fig. 7. The intrinsic electric field facilitates a
more facile charge-carrier due to the charge-separation effects [99].
Fig. 7ashows the band bending before and after contact with electrolyte
due to dsorbed charged species or surface states at the interfaces.
During lig| iation, electrons are excited from VB to CB. However,
the change of majority ¢ in an n-type semiconductor is relatively
small to induce no change in the Fermi level. The magnitude of Fermi
level separation is ed as photovoltage (V) in Fig. 7b. In an equi-
librium condition, the Fermi level is aligned with that of electrolyte;
Therefore, the generated hole will readily oxidize water molecules at the
interfaces. In a natural con n, the surface states induce a reverse
effect on water oxidation due to the reduction of a built-in electric field,
which decreases the photovoltages. Surface states can be the termina-
tion of lattice periodicity, adsorption of chemical species, and the
recombination center, which potentially quench the photocarriers and
lower the water oxidation efficiency.

Effective charge separation can be further improved by increasing
the aspect ratio (a ratio between the length and diameter of nano-
structure) of nanowires or nanorods. A higher aspect ratio determines a
shorter hole diffusion length and makes the charge separation effective.
The light absorption is ensured by the micrometer scale length of
nanorods or nanowires, while the charge separation is supported with a
higher aspect ratio. As the dimension of nanomaterial is crucial for
charge transfer and separation, novel 2D materials have recently
emerged for energy storage and conversion since their optoelectronic
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Fig. 6. (a) Nanostructuring a planar Fe,04 surface to improve the charge separation and extend the light pathway for better absorption and (b) the number of

publications using 2D photoanodes with Scopus index.
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Fig. 7. (a) Band bending in an n-type semiconductor before and after contact with electrolyte to form a space charge and (b) the change of Fermi level after light

illumination.

and charge mobilities [103-105]. Therefore, 2D materials with a unique
morphology offer a promising altemative for photoanode design.
Consistently, the number of published articles on 2D photoanodes is also
increased, as indicated in Fig. 6b. Some recent works utilizing 2D ma-
terials are summarized in Table 2.

Integrating 2D materials with metal des (MOs) is an exciting so-
lution to overcome their drawbacks of narrow light absorption, short
charge lifetime, high charge recombination rate, and poor structural
stability. The naacale 2D materials with MOs heterostructures provide
some beneficial aspects for PEC water splitting in several ways. \A
nanoscale MOs with high surface area tend to aggregate to form larger
clusters with decreased surface area [129,120]. The issue can be over-
come by immobilizing the tiny MOs on 2D material surfaces with a good
interaction to provide facile charge transfer between them and reduce
agglomeration. Secondly, Facile charg@lransfer is possible since the
interfaces with different band positions between MOs and 2D
could be engineered to provide an electron migration with a built-in
electric field and spatiallmte the charge carriers with longer life-
time [131-133]. Thirdly, the interface between the MOs and 2D mate-
rials could contribute to the bandgap tuning due to the surface strains
near the interfaces. [t provides an enhancement in the light absorption
range [134,135]. Fourthly, the high aqueous stability of 2D materials
can be a protective layer for unstable MOs to avoid decomposition
[136]. Finally, as the electrons are transferred from one phase to

Table 2

Recent works on 2D nanostructure photoanades for effective charge separation.

another, those two materials can synergistically parm the PEC-WS
process. In addition, most MOs and 2D materials can serve as to-
active sites to increase the amount of electron and hole pairs and boost
the surface reaction by reducing the activation energy. However, if the
2D materials are non-photoactive, they can serve as support fgeihe MOs.
As a result, synergistic between these materials may show good light
absorption and high catalytic activity compared to their pristine coun-
terparts [137].

3.2 Co-catalyst

After photoexcitation, the charge carriers diffuse to the electrode
surface for redox reactions. However, many factors, such as surface
states, defects, and long diffusion pathways, induce a higher surface
recombination rate. Suitable co-catalysts are required to improve the
redox activities on the electrode, reduce the reaction energy barrier, and
accelerate the charge transfer for boosting surface chemical reactions
[138-140]. For instance, an approach with surface modification to
decrease the charge recombination in hematite-based photoanodes can
control the surface irregularities by passivation of surface states and
applying a metal-oxide layer or deposition of co-catalysts [141-145].
Some co-catalysts such as [rQs, NiOOH, Ni-Pi, Co-Pi, Pt, FeNiO,, gra-
phene, and molecular catalysts are promising for surface modjmion to
overcome sluggish water oxidation. [146-152] Recently, transition
metals, such as Ni, Co, Fe, and Mo hydroxides and oxides and their

Photoanode materials OER onset potential Jon at 1.23 V (mA/em”) IPCE Electrolyte Light intensity Ref.
(Viue) at 400 nm (%) (mW,/em”)
Zn0/MoSa 0.4 20 0.5 M NasS04 100
TiD o/ MoSes 0.1 (] N.A 1.0 M NaOH 100
a-Feala/CalN g 10 0.4 N.A Naa504 100
Bi-doped Fes0s 0.43 0.6 25 @; MayB Oy 100
Zn0/Graphene 0.z 0.6 1.8 1.0 M NaOH 100
Zn0/Graphene 0.4 0.3 N.A 0.5 M Nay50, 150
WO4/h-BN 0.8 16 150 Na,50, 100
BiVO,/1G0 0.2 11 323 d phosphate buffer 100
a-FeaD4 /ZIF-67 0.7 [1R:] 200 1.0 M KOH 100
Ti0y/NH,-MIL-125 0.4 0.8 36.0 0.5 M Na,S0, 100
TiD o/ NiFe-MOF 0.3 0.e 25.0 0.5 M NasS50, 100
BiV0,/CoNi-MOF 0.6 32 320 0.5 M Nas50, 100
BiVO,/TiaCaT, 0.6 0.9 1.0 M K,B,05 100
1125/ Ti0a 0.1 273 % NaOH 100
I8/ Ina0y 0.2 015 N.A ﬂ NaOH 100
Fes04/BiV0,/ W03 0.3 275 0.5 M NaoS04/0.5 M NasS0q 100
BiVO,/TiOa 0.2 170 h 0.5 M KPi/1 M NayS0, 100
NiOyg-CaNy 1.2 0.1 N 0.1 M KOH M.A.
BiVO,/Black P 0.6 17 N% 0.5 M KFi 100
CuWO0,/Cds 0.2 N.A. N.A. MNay50, 100
CdS/ZnFe,0,/Cus0 0.1 20 N.A. w: May50, 100
w-Feg04/Ni-MOF-74 0.6 [R:] 6.2 1.0 M KOH 100
Zn0/ ZnNi-MOF 0.3 14 N.A 0.5 M NayS0, 100
o-Fea04/h-BN 0.7 11 45.0 1M NaOH 100
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Ebdl.u’]ah!al
oxyhydroxides and phosphates, have been used as co-catalysts for oxy-
ﬁ evolution reactions (OERs) [153-156]. Although all those
atalysts suffer from low electrical conductivity [ 157], their low cost,
abundant earth reserve properties, and capability to work under benign
itions are advantageous for material development. In addition,
transition-metal phosphides (TMPs), namely NiP. FeP, MoP, an are
excellent co-catalysts with comparable OER performance as precious
metals (Ir, Ru) and metal oxides (RuQs, IrO,) catalysts [158-162].
Among the TMPs, NiP have been widely applied for different kinds of
electrochemical uses [163,164]. It is considered that phosphor induces
stable structure and a crucial part in the electrochemical features. [165]
Nevertheless, incorporating TMP-based co-catalyst to oxide electrodes is
still required for industrial applications. Liu and Bu et al. successfully
applied Co,P and Ni,P co-catalysts on Fe,04 electrodes to enhance the
WS process [166,167]. However, the exact mechanism of
phosphide-based catalytic materials for water oxidation is still not clear
and requires more research efforts. Ruifeng et al. investigated a
Ni-Pi-modified Fes03 photoanode that exhibited improved photo-
electrochemical activity toward glycerol oxidation. The catalytic activ-
ities were enhanced twofold at 1.5 Vgyg after incorporating Ni-Pi to
form Pi-FexO3 [168]. Schipper et al. also confirmed the utilization of
bimetallic phosphide FeMnP co-catalyst on ru 1, for PEC-WS re-
actions [169]. Furthermore, Cao et al. mo u-Fe,0y with Ta doping
and Ni,P and successfully reached a photocurrent density of
298 rm'&;_"i:m2 at 1.23 Vigyg, which is 2.76-fold higher than that of pris-
tine o-Fes03, as shown in Fig. 8a [170]. The onset potentials and
chronoamperometric OER stability also enhanced, as indicated in
Fig. 8b and ¢ after spin coating of NisP quantum dots (Fig. 8f). It is also
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shown that the surface activation of NiOOH induces lower Gibbs free
energy during the steps of OER mechanism in Fig. 8d and e. This work

hown that the incorporation of NizP and NiOOH on o-Fes03 reduces
the reaction energy barrier and accelerates the charge transfer to boost
the water oxidation reaction in Fig. 8g.

In addition, some works iVO, photoanodes with co-catalyst
modification_to overcome the severe charge recombination and slow
kinetics in C performance [171]. It was found that suitable
co-catalysts can capture the charge carriers and accelerate the surface
reactions to provide oxidation sites as well as protect BiVO4 from pho-
tocorrosion. Table 3 indicates the critical results in PEC water oxidation
with different co-catalysts on BiVQy in recent years.

3.3, Surface passivation

The stability of photoanode materials, including metal oxides, metal
sulfides, metal nitrides, and other organic materials [29,71,72] depends
on the properties of semiconductor materials. If the photoanode mate-
rials oxidize during the PEC-WS process (light absorption, bulk separa-
tion, and surface catalytic activities), the stability will be poor. There are
primary causes of photoanode instability under these circumstances.
Firstly, oxidation is indicated with a dissolution rate of photoanode
materials during the PEC test, which is related to the photogenerated
holes. Holes on the electrode surface are equivalent to losing electrons
and weakening chemical bonds among atoms. If affinity reagents existin
the solution, the bond-weakened particles will dissolve easily due to the
strong coloumbic interaction. Based on the observed phenomenon,
narrow-bandgap materials have more photogenerated carriers.
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adsorbates were nted by cyan groups, (e) Free-energy graph of OER rea
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NizP and Ni;P@NIOOH, and (f) schematic drawing of NizP/Ta:u-Fe,05

photoanode with reduced the reaction energy barrier to boost the water oxidation reaction.

Reproduced from Ref. [170] with permission from Chemical Engineering Journal.
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Table 3
Specific co-catalysts on BiVO, photoanodes with the synthesis methods, reaction conditions, and photocurrents at 1.23 Vg,
Cocatalyst Synthesis methods jon conditions Photocurrent at 1.23 Vi Ref.
H-CoAl-LDH plasma etching NayS0y, illumination (100 mW/cm?®) 3.5 xm'na
H-Co-Ci plasma etching NauS0,, illumination (100 mW.cm) 2.95 mA/cm”
LDH@QD hydrothermal method PBS (pH 7), illumination {100 mW,/cm?) 2.23 mA/em®
FeOOH photodeposition Bd M KH2PO, (pH 7), illumination (100 mW,/cm”) 1.0 mA/em”
U-CoDOH Ar-plasma treatment B8 M Na,S0, (pH 7), illumination (100 mW/cm?) 4.9 mA/em”
NigOq hydrothermal method 3 i phosphate buffer (pH 7), llumination (100 mW/cm?) 3 cm?
CoPi electrode posited 3 P bugfer (pH 7), illumination (4 mW,/cm®) Dwg
Co-Sil photoelectrophoretic deposition 3 M KB40 (pH 9.5), illumination (100 mW,/cm®) 5.0 mA/em®
CoFe-PA solvothermal S8 1 NaBi (Ph 8.5), illumination (100 mW,cm?) 4.5 gddrm®
Ti0s o atomic layer deposition E8 M KBi (pH 7), illumination (100 mW,cm®) 6.1m2
Fe Ni, O0H Ph modulated immersion 3 m K;B0O, (pH 9.5), illumination (_IGG mw,—’cmz) 5.8 mA/em®
NiB chemical reduction S48 M KBi (pH 9.2), illumination {100 mW/cm®) 3.47 mA/em?®
[-FeDOH solution impregnation Bl M Na.s0, (pH 7, illumination (100 mW /cnr') 4.3 mA/em?
CMs immersion 0.5 M phosphate bugfer (pH 7) illumination (100 mW,/cm®) 2.1 mA/em?

Therefore, they are susceptible to photo corrosion and unstable in
PEC-WS process [72]. This susceptibi]jucidahas the reason for un-
stable low-bandgap materials, while wide-bandgap semiconductors,
such as Sn0a, ZrO3, and Aly0; are relatively stable [74,119,185,186]. As
a result, material selection based on the capability of light absorption
and bandgap is crucial for photoanode stability. Secondly, the photo
c property also depends on the electrolytes used during the test.
It plays an essential role in the chemical stability of photoanode. For
example, most semiconductors are unstable in acid electrolytes. There-
fore, choosing electrolytes is a vital step toward achieving photoanode
stability. Various kinds of electrolytes are used in the PEC test, such as
potassium phosphate, KOH, HCl, NasS04, borate buffer, and so on, to

achieve reaction stability. Thirdly, the relative bandgap position of the
photoanode would also determine the potential of photo corrosion in a
semiconductor material. It is related to the photoanode self-oxidation
potential and the alignment of water oxidation potential to the
valence band maximum (VBM) [77]. Consequently, selecting the pho-
toanodes with appropriate energy band positions can promote a stable
performance. Fourthly, during the PEC process, the generated holes are
transferred to photoanode surfaces for an oxidation reaction. However,
if the photogenerated holes accumulate at this moment and are too late
to transfer for water oxidation reaction, it will cause deactivation to
photoanode [78]. Regardless of metal oxide or sulfide photoanodes,
photo corrosion may happen in several causes, as mentioned above. For

(a)‘ e —

Surface states passivated l

e — @
NEicor o |@

© Ni**/Cod* N—h,0
.. N __aNi*iCo*
e

‘ H0
H,

AL r—

,’:u
S
s
%

@®;

—o—®
BIVO,

Pt
(b) e
o — ° — 1 Ni**/Co®* o,
k.. =150s1 K 2 Nivicor ) S=HO
= w recy T
k:.:¢= e E Ni*/Co*

Fig. 9. (a) Pyramidal BiV04/NiCo,5, photoanode for passivating the surface states by decreasing the rate constant of recombination and increasing that of charge
transfer based on the comparison between (b) pure pyramidal BiVO, and (¢) NiCo,5,-deposited BiVO, photoanodes. Copyright 2020 American Chemical Society.

Reprinted with permission from [187].
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example, the instability of BiVOy4 is also caused by the V dissolution
during PEC process [79].

In the other case, the surface state of BiVO4 can be passivated with
Co/Ni sulfide [187]. avas found that the presence of NiCo2S4 did not
tgnificantly change the rate constant of charge transfer (K,,) on the
BiVO, photoanode compared to that of pristine BiVO,; photoanode. It
implies that the NiCo,S4 cocatalyst does not affect the charge transfer
across the BiVO4 and electrolyte interface 8 |. Asshown in Fig. 9b and
c, the suppressed K. with a minor change of K, suggzests the
enhancement of water oxidation kinetics is influenced by the NiCoaSy
cocatalyst in the passivating surface state on the BiVO4 surfaces [185].
The passivation of NiCo2S4 cocatalyst also e charge lifetimes at
BiV0,4/NiCo,5,; photoanode interfaces based on the intensity-modu
photovoltage spectroscopy (IMVS). As indjcata in Fig. 9a, the high
activity of photogenerated holes in BiVO, contributed by the
dual-metal Ni**/Co®" ions that immediately capture the hole to
oxidized to Ni*' /Co”" ions and unstable Ni** /Co** ions. The unsta
Ni**/Co*" ions will oxidize water and subsequently, they will be

Joumal of Envir | Chemical Engineering 11 (2023) 109356
mca‘:d to initial Niz+/C02+ ions. The NiCosS4 catalyst with negligible
K, acts as a hole reservoir that provides electrons to passivate the sur-
face states and suppress surface recombination.

An intermediate layer is required to be added at the interfaces be-
tween semiconductor layers as their CB and VB band positions are pretty
different to favorably transfer the generated electron and hole with a
graded transition. Cao et al. improved the charge separation efficiency
between ZnQ, CdS, and ZnFe:04 band structures [33]. Pan et al.
confirmed a better charge separation with a double type-l hetero-
junction by adding a TiD2 layer between Sn02 and BiVO4 [ 1589]. Besides
optimizing interface contact and reducing recombination, the band
mismatching also can be solved with the use of an intermediate layer, as
shown in Fig. 10a. [190] Luo o-workers fabricated an Al,O4 layer
between Si/Si0, and Ni/NiO, by atomic layer deposition to passivate
the interface defects and reduce the pinning effect of the Fermi level in
Fig. 10b [191].

In the specific sites at photoanode/electrolyte interface, charge car-
riers accumulate on the surface to cause severe recombination and

Fig. 10. (a) Bancargy position with SnOs
passivation layer. Reproduced with permission
from [192] Copyright 2011, American Chemi-
S Society, b)Band energy alignment of the
A S0, /ALLO 5/ Ni/NiD,/NiOOH photoanode.

_ [0 Reproduced with permission from [ 191 | Copy-
Ny n'SUSiOXf right 2019, Wiley-VCH, ¢) Schematic diagrams
: ! — of the introduction of ZIF as otogenerated
l: CB" hole  extraction  layer the  photo-
:I o anode/electrolyte interface. Reproduced with
DS’ = E'"" permission from (193] Copyright 2021,
<] 2 =K 77.d. Wiley-VCH, and (d) the photogenerated carrier
1 Dc., transport process of composite phot es
: with and without mediator or setter. Repro-
: s + duced with permission from [194] Copyright
! g VB 2019, Wiley-VCH,
[
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reduce the performance due to the electron transfer back and sluggish
transfer dynamics [88,123,195,196]. To solve this issue, an intermedi-
ate layer can be used to promote charge transport for the WS process.
Tang et al. confirmed that the TiO: layer induced electrons to the
electrolyte interface, causing profound camier loss [193]. With
Co404/Ti0, heterojunction in Fig. 10¢, the electron transport from TiO,
phase was suppressed. The type-1I heterojunction also promoted the hole
transfer to the electrolyte. Considering the ZIF-Co.Zn;_y with a more
negative VB than Co304, the hole extraction from TiO: layer was
enhanced to the electrolyte interfaces by ZIF-Co.Znj o/Co304/TiO2
multi-graded heterojunction. The rapid transfer of holes will suppress
the charge recombination. Ning et al. indicated that the significant po-
tential difference between the water oxidation potential and VB of
BiVO, decreased the cell performance [194]. 5,10,15,20-tetrakis(4-car-
boxyphenyl)porphyrin-Cof) ) was utilized as a transport channel
similar to a volleyball setter to promote the transfer rate of holes to reach
the photoanode surface. The IMPS with Tg= (2nfy.) " confirmed that
the electron lifetime of BiVOs/CoPy/FeNi(OH), was longer than that of
BiVO4/FeNi(OH)y. CoPy plays a crucial role in facilitating hole transfer
from BiVOy4 to FeNi(OH), and reducing carrier accumulation at photo-
anode/electrolysis interfaces. Therefore, introducing the intermediate
layer with significant energy b: ifferences can be used as a transition
for effective transmission and separation of carriers and improving the
performance of photoanode PEC-WS process. Table 4 briefly summa-
rizes some useful functional intermediate layers to advance water
oxidation on photoanodes.

3.4. Heterojunction formation

One of the essential strategies in improving light absorption, charge
carrier separation, and redox capability with high energy conversion
efficiency is using semiconductor heterojunction formation [33]. A
heterojunction formation is the interfacial of two semiconductors
inducing facile charge transfer between them. A PEC photoelectrode is
expected to adsorb the sunlight efficiently with a strong redox potential;
however, only a single semiconductor cannot satisfy these requirements.
One of the essential solutions is utilizing a heterojunction photo-
electrode composed of different semiconductors. [197-199] Therefore,
a semiconductor with a wide bandgap can be combined with a smaller
bandgap semiconductor to optimize the light absorption property and
simultaneously maintain a strong redox potential [200,201]. By
combining two or three semidonductors to form heterojunctions, the
essential requirements of photoelectrode can be overcome smoothly.
The exploration of heterojunctions in the PEC-WS field has been
extensively studied [202]. As the energy band struc f each semi-
conductor is different, the heterojunction formation can be classified
into straddling-gap junctions (type-1), staggered-gap junctions (type-II),
and broken-gap junctions (type-IM) [203,204]. Recently, another
Z-scheme junction with a unique charge transfer pathway of a Z-shape is
also extensively explored |2( 6]. In addition, the heterojunction
formation also can be defined as p-p, n-n, and p-n junctions [207]. The
schematic drawing of heterojunction formation is depicted in Fig. 11. All
the heterojunction formation indicates an efficient charge transfer
except type-1 heterojunction that tends to have a higher recombination
rate.

Table 4

Joumal of Envir 1 Chemical Engineering 11 (2023) 109356

In general, the heterojunction formation needs to have similar
thermal expansion coefficients, lattice spacings, and crystal structures.
The use of heterojunctions to improve PEC-WS performances has been
widely developed to enhance carrier separation and charge transport.
Furthermore, the surface area of active photoanodes may also be
improved by constructing the heterojunction. In addition, the specific
surface area of photoanodes may also ifiilase by constructing hetero-
junctions. As a result, the contact region of electrode/electrolyte and the
light-harvesting can be enhanced by utilizing a low bandgap semi-
conductor [208]. Nevertheless, heterojunction formation does not al-
ways show a good solution for the PEC process. In some conditions,
unavoidable issues, such as slower carrier transfer and separation, will
affect the PEC performances [209]. The lattice mismatch in the heter-
ojunction formation causes the bondi the interface not to be suffi-
ciently strong and generates defects which is unfavorable for charge
transfer and separation [210]. Simultaneously, the energy band posi-
tions of semiconductors should be carefully considered when con-
structing the heterojunctions. the energy band structures of
semiconductors match each other, the charge carriers can be accelerated
to induce high photocurrent and good water oxidation performance.
However, a poorly matched band structure will form an interface bar-
rier, which hampers the charge transfer during redox reaction. Based on
the knowledge of semiconductor band structure positions or the type of
heterojunction formation, relevant strategies to solve the carrier trans-
mission issue can be smoothly done. The promising staggered-gap and
Z-scheme heterojunctions are discussed further.

3.4.1. Staggered-gap heterojunction

The band alignment @vo semiconductors provides different het-
erojunctions, which are classified into type-1, type-1I, type-1ll hetero-
junctions, p-n type, and Z-scheme formation [211]. The holes and
electrons in a type-I heterojunction are transferred from semiconductor
A to semiconductor B during the photoreaction. The accumulation of
holes and electrons in VB and CB of the semiconductor will experience
severe charge recombination due to the lower bandgap of semi-
conductor B. It is suggested that the type-I heterojunction is
appropriate as a strategy to enhance photoreaction performances. In a
type-1I heterojunction, the generated electrons in CB of semiconductor B
will be drifted to CB of semiconductor A, while the generated holes in VB
of semiconductor A will be transferred to VB of semiconductor B,
implying a spatial separation of electron-hole pairs. Furthermore, there
is no directional charge transfer between semiconductors in a type-11
heterojunction. A low bandgap semiconductor combined with a wide
bandgap semiconductor will induce light absorption and facilitate the
extraction of generated carriers. Therefore, it is observed that con-
structing a heterojunction with an efficient photoexcited electron-hole
pairs separation will be an effective way to improve carrier dynamics.
Recently, type-Il heterojunction has been widely explored to improve
the PEC-WS process, such as ZnO/ZnS, [212] WO4/CdIn,S,, [213]
WO4/BiVO,, [214] etc [169,215,216].

Although type-Il heterojunction is very effective for charge separa-
tion and light absorption, powerful Z-scheme heterojunctions have
considerably attracted researchers’ interest due to some advantages
[211,217,218]. Selecting semiconductors with suitable energy bands is
not an easy task to control and regulate an efficient charge transfer and

Some proper functional intermediate layers to advance water oxidation on photoanodes.

Sample Intermediate layer J(1

&) IPCE

wng condition Ref.

R-BiV 0,/ CoPy/FeNi(OH), Passivation layer Hole extraction layer

4.75 mA em 2

0.2 M NayS0, [194]

T0% at 420-B00 nm 1 M Nay50,4/0.1 M KPi [191]

1-581/810,/ Aly 04/ Ni/ N0/ NIiOOH Passivation layer 28 mA em

1.23 Vg
FTO/Sn0,/BiV0, Seed layer . 46% at 450 nm, 1.63 Vg 0.15 M K280, [192]
ZnFey0,4/CdS/ Zn0 Protection layer 3.88 mA cm—> (0 Vagsagel) - 0.5 M Nas5 [28]
ZIF-Co,Zmy ./ Coq04/Ti0y Hole extraction layer 2,91 mA cm 2 1M NaOH [193]
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Fig. 11. Schematic drawing of (a) type-l, (b) type-I, (¢) p-n, and (e) Z-scheme heterojunctions.

separation. However, doping can be one of the ways to adjust the energy
band with donor and acceptor states. Doping also can form stepwise or
gradient (continuous) energy bands, which are adequate to solve the
charge transfer issues. Most heterojunctions are formed with
step-by-step preparation since most semiconductors cannot be formed
simultaneously. A semiconductor is first synthesized on a substrate,
followed by another in a stepwise preparation [169,219-221|. Some
[oent works are shown as examples. Gao et al. fabricated TiOs nanorods
on fluorine-doped tin oxide (FTO) with a hydrothermal method. The
obtained TiOs layer is treated with a secondary hydrothermal to grow
TiQy ultrathin nanosheets in situ on the first TiO3 nanorods | 222, The
nanorods and nanosheets with different facets promoted the charge
separation efficiency, lengthened the carrier lifetime, and improved the
hydrogen evolution rate. Zeng et al. successfully synthesized a
B-C3N4/Mo-BiVO, photoanode to increase the charge separation by
several steps of process [223]. However, in some cases, the stepwise
preparation takes time and damages the first obtained layer while syn-
thesizing the second layer semiconductor. To overcome this issue, some
scientists developed a one-step preparation process to fabricate the
heterojunctions. [224,225] As examples, Cao et al. synthesized a 3D
pyramidal InaO3/ InaS; array with an ion exchange method to obtain the
best performance at 1.23 Ve with a good stability [226]. Hou et al.
prepared a porous 2D lateral heterostructure of InyQy /ISy and the
performance indicated a 21-fold enhancement compared to the single
InsS; atomic layers [227]. Dong et al. modulated ammonia thermal
parameters with a onestep thermal route during the synthesis of

Semiconductor A

Semiconductor B

(a) Traditional Z-scheme

Semiconductor A

(b) All-solid-state Z-scheme

Ta3Ns/BaTa0aN heterostructures with a better PEC performance [225].
In addition, Meng et al. constructed a CdInsS4/InsS3 heterojunction
using Ni-phthalocyanine solution and achieved a charge separation
efficiency up to 90% at 1.23 Vg [229]. Briefly, the type-II hetero-
struct romotes light absorption, charge carrier transfer, and sepa-
ration due to the matched energy band with a built-in electr 8
Moreover, the availability of electrostatic interaction will cause photo-
excited electron-hole pairs to be hampered for the interface charge
transfer. As a result, there are still many works to explore the hetero-
junctions to solve the reversed effect for the PEC process.

3.4.2. Z-scheme heterojunction

As the type-ll heterojunction sacrifices the potential to separate
photogenerated electrons and holes, it will be a drawback for its appli-
cation. An e g strategy with Z-scheme hetercjunction has become a
new choice to enhance the PEC water-splitting performance. The Z-
scheme heterojunction is referred to the pathway of charge transfer in a
Z-shape during light illumination. There are three Z-scheme hetero-
junctions: ionic, [230] all-solid-state [231], and direct Z-scheme heter-
ojunctions [232]. The depicted Z-scheme hetercjunctions are shown in
Fig. 12,

The ionic Z-scheme heterojunction, as shown in Fig. 12a was first
introduced in 1979. In this type of Z-scheme heterojunction, a redox
electron mediator is required to faster the charge transport, increasing
the recombination rate between holes and electrons in VB of one semi-
conductor and CB of another semiconductor. Therefore, the electron in

Reduction

Reduction

Q

Semiconductor A,

Semiconductor B

(c) Direct Z-scheme

Fig. 12. (a) lonic-, (b) all-solid-state-, (¢) direct-type Z-scheme heterojunctions.
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one's CB and hole in another’s VB can actively induce oxidation and
reduction reactions, respectively. There are some common redox elec-
tron mediators, such as 10%/T, NO*/NO*, Fe** /Fe?*, [Co(phen)s]**
2+ and [Co[bp}f)a]:‘“rz*'. However, the application of ionic state Z-
scheme heterojunction is limited due to environmental concemns. A
further improved Z-scheme type of all-solid-state has replaced its
application. The so-called all-solid-state Z-scheme composes of a metal
nanoparticle and two semiconductors with a matched energy band, as
shown in Fig. 12b. The metal nanoparticles such as Pt, Ag, Au, Cd, W,
and rGO play important roles in transferring the charge carrier with an
ohmic contact. As a result, this action will promote the recombination
between photoexcited electrons and hole from semiconductors A and B,
respectively. Some interesting works by Chen et al. and Fu et al. indi-
cated the effectiveness of all-solid-state Z-scheme heterojunction [233,
234]. Chen et al. constructed a g-CyN,/rGO/perylene diimide polymer
(C4N4/rGO/PDIP) with a simple method. The heterojunction scheme
achieved a high charge transfer ability for photocatalytic WS. The
phenomenon was also supported by a transient absorption spectrum that
indicated the lifetime of electrons was shortened and the lifetime of
holes trapped by PDIP was enhanced. The charge transition happened in
a timely and s manner to form a Z-scheme mechanism in
2-CyN4/rGO/PDIP, as shown in Fig. 13a. In addition, Fu et al. fabricated
an o-Fea04/Au/TiO; photoanode by coating Au particles on Fe,0, sur-
face, which further covered by TiO,. The design can efficiently extract
the photogenerated hE that are further accelerated with amorphous
TiO2 on the surface for the water oxidation reaction. However, the
mediator of Au also induces a reverse reaction, shields the light and
reduces the electron-hole pairs. Therefore, it is a challenge for Z-scheme
heterojunctions, which require long-term stability.

To overcome the stability issue, a direct Z-scheme heterojunction
that mimics photosynthesis is developed, as shown in Fig. 12c in this
type of Z-scheme, when twmniconductom with different energy levels
are connected, the excited electrons in CB of semiconductor A will drift
to CB of semiconductor B till the system reaches an equilibrium Fermi
level. As the positive charges continuously accumulate in VB of sel
conductor A and negative charges in CB of semiconductor B will form a
built-in electric field and recombine. In the meantime, band edge
bending occurs at the inf@face between semiconductor A and semi-
conductor B. During light illumination, th@Zilt-in electric field at the
semiconductor interfaces will accelerate the recombination between
electrons in CB of semiconductor A oles in the VB of semiconductor
B. The Z-scheme heterojunction will drive the water oxidation on the VB
of semiconductor A and the reduction reaction on the CB of semi-
conductor B. This mechanism obviously induces charge separation with
an efficient pathway. The advantageous no-mediator Z-scheme hetero-
junction can transfer the charges directly through the interfaces, thus
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shortening its diffusion distance, improving the charge recombination,
and enhancing the photovoltage of a PEC cell. As a result, the direct Z-
scheme heterojunction can overcome the reverse reactions and light
shielding phenomena. Furthermore, the density of effective photo-
carriers and resistance of photocorrosion are also improved. Specific
work with the direct Z-scheme heterojunction of black phosphorus/
monolayer Bi,WO, photoanode is successfully prepared by Hu and co-
workers . The as-designed photoanode indicated a potent photo-
catalytic activity on Hz generation and NO removal. Another work by
Liu et al. [236] also indicated a black phosphorus/red phosphorus
(BP/RP) heterophase, as shown in Fig. 13b. The staggered alignment
might help to separate and transfer charges, which proved with transient
absorption spectrum (TAS) via a direct Z-scheme pathway. Zhou et al.
utilized transient photovoltage (TPV) decay to analyze the charge car-
rier transfer in photoanode [237]. The carrier lifetime of ZnO/TiO,
heterojunction was found to be longer than that of single TiO,, implying
that the heterojunction construction induced electron transport at the
interface. Moreover, Xu et al. used time-resolved photoluminescence
(TRPL) to prove ZnlnsS4/CdS/Zn0O had a longer carrier lifetime than
ZnInsSs/CdS and ZnlnsS4 [235]. The construction of Znln»S;/CdS/ZnO
ternary heterojunction promoted carrier separation and the ZnO layer
prevented surface recombination and improved water oxidation
reactions.

There are two severe problems of mediators and weak van der Waals
interlayer int: ion. Firstly, the problems caused the low recombina-
tion between generated electrons in the CB of semiconductor A and
holes in the VB of semiconductor B. For ‘mm, Wang et al. synthesized
ultrathin polymers with aza-conjugated microporous polymers (CMP)
and CoN nanosheets to construct a mder Waals Z-scheme hetero-
structure [235]. The recombination through the van der Waals in-
teractions increases at the interfaces between the two polymers in the
Z-scheme heterojunction. Interestingly, the solar energy conversion
efficiency to hydrogen (STH) could achieve 0.23%. The STH value was
further enhanced to 0.4% when rGO was introduced as a solid electronic
mediator into the Z-scheme heterostructure. Secondly, finding the
cocatalyst and sacrificial agents to improve the surface catalytic activity
is still a challenge, mainly for the slow four-electron involved OER.
Wang et al. also utilized Pt and Ca{OH)2 cocatalysts on their Z-scheme
heterojution to evolve Hy and Os. However, the characterization to
identify t Z-scheme heterojunction is still a challenge. Low et al.
identified the formation of a dj:@schame Ti0,/CdS heterojunction
with hydroxyl radical test, in-situ X-ray photoelectron spectroscopy, and
density functional theory (DFT) simulation [239]. The hydroxyl test
confirmed the formation of ‘OH radical was on TiO» phase, not on CdS
via a Z-scheme charge transfer, indicating the generated photo electron
in CB of TiOy recombined with VB of CdS. Therefore, the available holes
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Fig. 13. (a) Z-scheme heterojunction with rGO as the mediator for recombination site [235] and (b) the Z-scheme energy band offsets diagram and heterojunction

interface charge property [236].
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in VB of TiO» would oxidize water to hydroxyl radical. In addition, the
in-situ XPS also indicated a negative shift of Cd peak and a positive shift
of Ti peak, indicating the electrons transferred from TiO3» to CdS via a
Z-sch rmation. The other significant characterization for identi-
fying a Zscheme hetercjunction was also done by Wang et al. [240].
They used electron spin resonance (ESR) and surface photovoltaic
spectroscopy (SPV) to study the carrier transfer in $v-Znln,S,/MoSe, for
photocatalytic hydrogen production. SPV analysis indicated the signal of
Sv-ZnlnsS4 is higher than that of Sv-ZnlnsSs/MoSes, implying that the
holes on the surface of Sv-ZnlnsS4/MoSes were decreased. The natural
CB position of MoSes did not fit to reduce Oz to 03, however, the -03
signal was detected in Sv-ZnlnsS4/MoSes in ESR analysis, indicating that
many electrons accumulated at CB of Sv-Znln,S,; with Z-scheme heter-
ojunction formation. The advantage of Zscheme heterojunction is the
efficient separation of photocarrier while maintaining a strong redox
potential although for charge separation in a bulk phase. The coexis-
tence of high-efficiency bulk phase separation and strong redox capa-
bility contribute to a high efficient PEC water splitting. Nevertheless, the
design and characterization for Zscheme heterojunction are
challenging.

3.5. Doping strategy

Doping is one of the efforts to improve specific activities in photo-
electrodes with alien elements. By introducing a particular element to a
matrix, some properties of materials can be improved, such as increasing
conductivity, better charge separation, lower recombination rate,
enhancing light absorption, and promoting directional charge transport.
As the alien element is doped into a material, the conductivity will be
influenced by amounts of carrier concentration and mobility with a
relation: & = ng, + nppy, The variable of o, n, and p represent the
conductivity, carrier concentration, and charge mobility, respectively.

(a)
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Doping alien elements will increase the carrier concentration and con-
ductivity [241]. Therefore, the introduced elements also can change the
electronic structure of materials with certain positions of CB and VB.
Based on the doping position, doping can be divided into substitutional
and interstitial doping. According to the doping positions, it can be
divided into interstitial and substitutional doping. The substitutional
one requires a similar radius and number of valence electrons. Based on
the distribution of dopant amounts, the doping should be incorporated
into a matrix uniformly and gradually. Uniform doping requires a
certain amount of dopant to ensure a uniform phase. If the dopant is
excessive, it will act as a recombination center, inducing a smaller
depletion layer and affecting the carrier separatign (242,243,

Contrastly, gradient doping will form a grad ergy band struc-
ture and expand the depletion layer with better charge separation in a
photoanode. The types of dopants can be classified into inorganic and
organic materials [244-246]. Meng et al. successfully used In and Zn/In
dopants to dope SnS: nanosheet to form a gradient energy band that
enhances the carrier separation and its concentration with higher effi-
ciency [247]. Hufnagel et al. demonstrated uniform Sn doping on he-
matite surfaces within 5 nm depth. Further analysis with IMPS indicated
that the top 5-nm hematite layer exhibited higher charge transfer effi-
ciency than the other area with uniform Sn doping throughout the he-
matite layer [248]. In this regard, the top Sn doping induced a gradient
band that enhanced the charg@spon and separation. The increased
efficiency can be generated by a new energy level in the forbidden band
that expands the light response of materials.

For example, in Fig. 14 ab,c, Xiao et al. indicated the gradient
doping of Mg”" to substitute Ta®" in TasNs to form defect states to
suppress the charge recombination [249]. The improvement is proved
with time-resolved photoluminescence (TRPL) spectroscopy to detect
the extended lifetime of charge carriers compared with the system with
homogenous doping. In addition, Zhang et al. also investigated

—
(=}
—

0:’ 1 2 -
4 3 2
< -af ; - e e
s gty Mon  TaNs iy 2 Fuo g
§ —4E 3 9, =z
2 0o & w ° surface *» core
2 F 2 > surface --» core
2 °F 2raev| 211eV pad 3 g ) e
] o w W\'—
- el —
B 2 B 2 & & & L/
N % ho. pristine CdS Grad-O CdS
-8 ; S
E
(e)
Grad-P:Fe;0,

RBD Fe;0, Grad-P:Fe;0, /Co-Pi

CcB
Er
VB

Grad-P:Fe,04 Pi

14, a) Schematic energy band structures of TasNs, Mg(L):TasNs, and Mg(H):TasNs. with band bending for b) hom ous and ¢) gradieanagNs.
Reproduced with permission | 249 ). Copyright 2022, Springer Nature. d) Band structure of pristine CdS and Grad-O CdS in cha ansfer mechanisms. Reproduced
with permission. |57] Copyright 2022, Elsevier. e) Diagrams of the preparation process and band bending of a grad-P: Fe,0./Co-Pi photoanode. Reproduced with

permission from Ref, |251] based on CC BY 3.0.

15




H. Abdullah et al

substitution Ta doping in hematite with linear electron energy loss
spectroscopy (EELS) scanning [66]. The EELS analysis confirmed that a
gradient doping of the core-shell hematite homojunction nanorods
enhanced photocurrent density and improved the turmn-on potential. In
another group, the oxygen gradient doping could induce S vacancies in
In,S, with PVP treatment, which enhanced charge carrier, reactive sites,
charge separation and transfer [250]. Moreover, Yu et al. doped oxygen
to dendritic CdS nanorods with a radial doping gradient which induced a
continuous band-bending structure to promote directional photocarrier
transport from the surface to the core and Ti substrate, as seen in
Fig. 14d [67]. Luo et al. also successfully created gradient P doping to
cause upward bending in the energy band with a broader area, which
increases the conductivity of Fe,04 The P dopant also promoted a
charge separation with a radial direction, as shown in Fig. 14e [251].
Introducing vacancies in lattices with a similar concept of doping
produces lattice distortion and terminates the periodic arrangement of
crystals that makes defects. The generated defect states in the bandgap
expand the light response and promote charge carrier separation
[252-254]. For example, Zheng et al. deposited a crystalline TiOz on a
silicon-based photoanode with gradient oxygen vacancy [255]. The
constructed gradient oxygen defects created channels for the charges to
pass through the TiO, layer, which improved the di ion and
number of transport channels, as evidenced by conductive atomic force
microscopy (C-AFM). It was found that the gradient oxygen doping
promoted PEC performances by increasing the conductivity and carrier
concentration and also avoiding severe recombination in uniform oxy-
gen doping. Therefore, the gradient energy band widened the depletion
layer to promote effective directional charge transfer and separation.
Some works with suimblem'lent doping will be discussed to show
critical progress in hematite photoanode for PEC water splitting. The
strategy is considered effective in alleviating carrier r bination as
the experimental data indicates doping can enhance charge carrier
mobility and concentration. Recent reports show various dopants of Nb
(V) [256], Ti(IV) [257,258], Si(IV) [259], Zr(IV) [260], Sn(IV) 2:&2, and
Pt [261] ipgorporated in hematite demonstrated better charge separa-
tion and sfer. Among the n-type metal dopants, Ti (IV) in hematite
exhibited higher photocurrent at 2.25 mA/m? at 1.23 Vrue for water
Zaglation. There are no morphology and surface structure changes after
Ti doping. However, the donor concentration was_significantly
increased with improved PEC water oxidation [257]. In other work,
the donor concentration of hematite was enhanced by 20 times after
Ti-doping compared to the undoped hematite [258]. Moreover, Zr (IV)
dopant in o-Fes03 increased one order magnitude of donor concentra-
tion, implying a higher conductivity of o-Fes03 [260]. In the case of
non-transition metal dopants, Sn(IV) and Si(IV) exhibited a practical
improvement in water oxidation activity [259,262]. Lukowski et al.
confirmed that the Si-doped o-Fes03; nanowire has a donor concentra-
tion (4 » 10~% Qm), which is higher than the undoped one with donor
density (4 x 10° Qm) [259]. The colactivity on charge transfer and
injection in hematite was revealed by Ling et al. by preparing Sn-doped
o-Fey04 through thermally-induced diffusion [262 |. Further analysis by
Tamirat et al. indicated that the Sn diffusion led to a gradient doping,
creating steeper voltage and improving the carrier separation. These two
factors significantly enhanced the PEC performance of hematite photo-
anode [263]. Although the gradient doping improved the PEC perfor-
mance, some issues, such as radius mismatch with the matrix lattice, will
limit the doping concentration [264]. Some scientists debated that mono
doping will create recombination centers to lower the charge mobility
and concentration [265]. Another study demonstrated that hematite
with co-doping exhibited higher catalytic activities than single doping.
The reason is that two-ion doping can reduce the recombination center
and efficiently improve the charge trans [266]. For example, the
result in Tamirat's group indicated that @single gradient doping of
Sn-hematite only achieved photocurrent at 0.86 'm? with 1.23 Vg
However, when it was co-doped with Zr, the ph urrent was further
increased to 1.34 mA/m>. The progress can be attributed to the
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synergistic effect of Sn and Zr dopants that alter the conductivity three
times higher tl'a the one with only Sn doping [263]. In addition, the
other report on Si and Ti co-doped hematite also confirmed a higher PEC
efficiency for water oxidation. The co-doping strategy successfully
overcomes the mismatch of ion radius between Fe, Ti, and Si with
impr: carrier concentration, evidenced by Mott-Schottky analysis
[70]. Therefore, the IPCE of Si, Ti codoped hematite film achieved to
34% at 365 nm and 0.6 Vagagn for the opset potential. The other
improvement with codoping of Sn and Mg to&@matite system also have
been done by Xie et al. to reach a maximal 1.1 mA/cm? at 1.23 VRHE,
which increases about 3 times than that of pristine hematite [267]. The
improvement is attributed to structural directing agents of Mg and Sn
that lead a proper lattice arrangement. The realiving lattice distortion
improves the charge injection and transfer efficiencies without changing
the carrier concentration, which was evidenced with EIS analysis. As we
can see from the above examples, the attempts of doping is to improve
the limited conduction property of hematite, regardless of single or
codoping strategy [268]. Nevertheless, some contraditive concepts are
found in recent work on Ti*' do to hematite to generate
electron-hole recombination centers on Ti surface sites. On the other
hand, it is also reported th i doped into hematite might capture and
store the generated holes for water oxidation [269]. Further works on
the special effect of surface defect on the charge transfer property of
hematite are required. Some interesting works using gradient doping
strategy are summarized in Table 6.

3.6. Ternary oxide-based photoanodes

Temary oxides consist of two different metal ions in an oxide matrix.
Significant progress has been made in investigating ternary oxide-based
photoanodes for PEC-WS processes. The advantages of using temary
oxides are providing more opportunities to tune the atomic and elec-
tronic structures of photoelectrodes and their compositions that can
directly influence their photoelectrochemical properties. The recent
ternary oxide-based semiconductors crucial for PEC-WS can be classified
as ternary iron oxide, tungsten oxide, and vanadate.

3.6.1. Ternary iron oxides

A relatively good photoanode activity was observed in the ternary
spinel structures, such as ZnFes04, MgFez04, and CuFes04. The spinel
ZnFe,04, with many advantageous features of Fe,0, has been widely
studied as a photoanode. These advantages incl low cost and envi-
ronmentally benign nature, a visible-light active bandgap (1.9-2.1 &V},
and excellent stability in base solution [270-273]. Despite this advan-
tage, the performances of ZnFez04 photoanodes are inferior to those of
Fez03. The most remarkable performances of ZnFes04 for PEC solar
water oxidation are summarized in Table 7 [274-279].

In 1985, Blasse et al. investigated the ZnFez04 photoanode prepared
as a pellet using solid-state methods, annealing at 700 °C in a nitrogen

ient to improve its n-type character. However, the generated

ocurrent in NaOH electrolyte under 300 nm light illumination was
low (0.01 mA/cm? at 1.23 Vgye). Further improvement, Wijayantha
et al. synthesized ZnFe,0, photoaaes with aerogel-assisted chemical
vapor deposition (CVD), in which the particle size and porosity of the
sample could be controlled by cha g the solvent during the prepa-
ration process | 280]. They observed that a ease in particle size and
an increase in the surface area improved the photocurrent density of
water oxidation from 0.08 to 0.16 2 at 1.23 Viue in NaOH
electrolyte. The result implies that bulk charge carrier recombination is
one of the main limitations of ZnFe,0,4, which is also the primary
challenge in Fe,04.

In the other group, Lee et al. prepared ZnFe, (%) FeOOH nanorod
arrays (diameter = 40 nm, thickness = 400 nm) on fluorine-doped tin
oxide (FTO) glass using chemical bath deposition [274]. The ZnFesO4
was drop-casted with agueous Zn{NO3 )z solution on FeOOH electrodes
and annealed to form ZnFes04. After removing the excess ZnO layer in
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Table 5
Summary of PEC performances using heterojunction formations.
Sample .‘,'m, J(1.23 Vi) mlyte H, evolution rate Ref.
CdIn,S/ TS, 0.02 Vi 2.98 mA/em® 0.5 M NasS0, -
2-CyN,4/rGO/FDIP | 2 . 15.80 pmol b '
ZnInaSq/CdS/Zn0 -0.03 Vigm 3.43mcm2 0.5 M NasSO0, b
aza-CMP/CaN - - - 5.0 pmol g *
a-Fes0q/Au/Ti0, - 1.05 mA/em® 1 M NaOH 18.67 pmol cm *h !
BF/RP . : : 0.33 mmolg 'h!
BN Zn0/Ti0y . 2.75 mA/em® 0.2 M NaaS0,4 45.6 pmol em pt
aza-CMFP/RGO/CoN - - - 10.0 pmol g
Ti04/CdS . . 11.9 mmol h 'm 2 for CH,
NiCoFe-By/Mg:TasNs,/Nb 0.40 Vi 8.5 mA/em® 1.0 M KOH .
NiFe[OH),/Ta:FeaDs @Fes0y 0.55 Vi 3.22 mA/em® 1.0 M KOH .
5,-ZnlnS,/ MoSes - - : 6321 mmolg ' h!
Zn/In:SnS, 0.3 Vg 0.23 i 0.5 M NasS0, £
WO,/InaSs-P 0.02 Vi 1.61 mﬁ 0.1 M NasS0, i
Grad-O CdS/Ti : 6.0 0.1 mA/em?® 1.0 M NaaS04/1.0 M NaH, H,0 I
grad-P:Fes0y/Co-Pi - 20 ;m:‘ 1M KOH !
Pd/b2-Ti0/b-5i 0.32 Vi 8.3 2 (0 Vi) 1.0 M NaOH !
Iy o/ TnpSy 0.75 Vi 1.28 mA/em?® 1.0 M KOH i
FH-TiOy . 2.24 mA/jem® &M KOH/10% v/v methanol 1.441 mmol g 'h '
0.566 mmol g 'h !
NiFe0,/B-CaNy/Mo-BiVO, 0.34 iy 5.93 mA/cm® PPB (pH=7) 77.5 M h !
TayNo/BaTa0,N - - - 27.3 pmol h !
Fibiad In a further study, Lee et al. synthesized ZnFes04 using a combina-
Szm:mr of PEC perfo ces usi adient doping strate tion treatment of microwave and Ha, 278 They introduced a thin TiO2
TITLAN SHT1 Tadl OpL & . Z
Y per 88 ping & layer between the FTO and ZnFe;04 layer to hinder the electron transfer
v ‘ i . .
Sample J(1.23 Vi) anset Electrolyte Ref. from FTO to t@ectrolyte. The TiO, layer was synthesized with spin
Vi) coating using Ti(IV) diisopropoxide bis(acetylacetonate) solution on
Grad-0 Cd5/Ti 6-020-1 mA/ NazS04/ [67] FTO, follow annealing at 250 “C. The thickness of TiO, layer was
Vo ;"’3 e is i'gx ﬁ‘ig“}: 1,0 —~2 — 7 nm. FeOOH nanorods were grown on the FTO/TiO; substrate
o le-Ti A mAcm” 5 % a [255] R 2
blackst 0 Vigse) using a reported method [274 |. Subsequently, aqueous Zn(NO3)2 solu-
grad-PiFes0./ 2.0 mA/em? 1 M KOH 251] tion was drop-casted onto FeQOOH nanorods with a 2-min microwave
Co-Fi m:m process to form ZnFes04 without annealing. The excess Zn0 was soaked
2
WO2/In,Sy-P 1.61 A 0.02 0.1 M Na2504 in NaOH solution. The microwave treatment produced ZnFe;04 nano-
i?;el?ci:i}ra g;: ﬁﬁz g'gg ?’:E :g‘}i'o" rods with a diameter of 60 — 80 nm, which is better than that prepared
FeaD, @Fe 261 ' ) with anneali furnace to maintain the conductivity of FTO sub-
NiCoFe-By/Mg: 2.5 mA/em® 0.40 1.0M KOH 249] strate [2 As a result, the FTO/TiO/ZnFe,0,4 photoanode could
TaaNs/Nb . generate a photocurrent densiﬁf ~ 0.22 mA/cm? 3 Ve in
TEFex0s 2.25 mac 1.0 R NaOH NaOH electrolyte. Further tre: nt with Hy at 200 °C for 2 h, the
SniFes04 1.86 mA/cm' 0.85 1.0 M NaOH

N; solution, pure ZnFe,0,4 films could be obtained. The obtained
p! current  density of as-prepared ZnFe,0, photoanodes was
0.24 mA/cm? at 1.23 Vayg after a microwave heat treatment [ 282,283,
The authors demonstrated that the microwave treatment could increase

charge separation from 4% to 8% at 1.23 Vpug by improving the

504 crystallinity. The crystallinity was confirmed by a decrease in

full width at half maximum (FWHM) of X-ray diffraction (XRD)
peaks. In addition, they also showed that the microwave treatment
increased oxidation efficiency from 10% to 80% at 1.23 Vg by
decreasing surface defect sites, which formed during a removal process
of the excess ZnO layer. Finally, the stability of ZnFes04 at 1.23 Veug
could achieve 0.24 mA/cm? for 3 h.

photocurrent density increased from 0.22 to 0.79 mA/cm? at 1.23 Viug
due to the increased oxygen vacancy sites. Further analysis showed that
the Hs treatment increased charge separation from 10% to 24% and
oxidation efficiency from 51% to 77%. To further improve the perfor-
mances of FTQ/TiO,/ZnFe,04 photoanode, an amorphous NiFeO, as a
co-catalyst layer was deposited on Hz—tn:ated/TiOZ/MezO4 with a
photolysis method using 1-sun illumination for 10 min, followed by a
heat treatment at 1 . The resulting FTO/TiO,/ZnFe,04/NiFe0,
electrode generated hotocurrent density of — 0.92 mA/em?® at
1.23 Ve in NaOH electrolyte.

The primary carrier density of a material can be increased with
atomic doping, which is another possible method to enhance charge
separation efficiency. Li et al. fabricated Ti-doped ZnFe;04 using spray
pyrolysis and annealing steps to replace Fe’t with Ti* [281]. The

Table 7

Solar water oxidation performances of ternary oxide photoanodes used a single photon absorber in KOH solution.
Sample Synthesis method Onset potential J(1.23 Vi) IPCE (1.23 Viye) References

at 400 nm

ZnFey0y Drop casting 064 0.24 7%
ZnFey0y Chemical vapor deposition 0.88 0.35 10%
MgFea0,/NiF e, Drop casting 0.64 0.04 3.5% at 1.1 Vi
CuFe,0,/ NiFeO, Drop casting 0.80 015 4% at 1.1 Vi
ZnFe,0y Atomic layer deposition 0.90 0.26 2%
ZnFey0y Spray pyrolysis 095 0.35 3%
InFe 04 /NiFel, Drop casting 0.53 0.35 B% at 1.1 Ve
Ti0y ZnFey0,/NiFeO, Drop casting 062 0.92 B%

17




H. Abdullah et al

incorporation of Ti into the ZnFes04 lattice was proved with a slight
shift of the (220) peak in XRD pattern to a higher angle of two theta
values. The authors confirmed that only 6% Ti in the site of Fe in
ZnFes0y4 lattice with XPS analysis. It w; erved that the J-V plot
indicated photocurrent density was improved from 0.05 to
0.35 mA/cm? at 1. in NaOH solution with the same onset po-
tential. In addition, Mott-Schottky analysis showed that the carrier
density of ZnFes04 increased without a change of flat-band potential.
However, there is no basic explanation of Ti doping in improving the
photocurrent. More investigation is needed to explore the doping effect
on photoanode performance.

Furthermore, n-type MgFes04 also possesses a spinel structure with a
bandgap of 2.0 — 2.2 €V [2584]. However, only a few studies discussin:
MgFe,04 as a photoanode have been reported recently [285-28
Those works used MgFe,0, as an overlayer on Fe,04 [287] and as an
n-type layer on p-type CaFe,0,4 to form a heterojunction [288]. There is
limited information available discussing MgFes04 properties used as an
active light absorber. The CB position of MgFes04 was confirmed to be
more negative than 0 Vgyg with Mott-Schottky measurements and
detection of Hs production on MgFes04 when it was used as a photo-
catalyst [289]. Another n-type CuFes04 has a bandgap reported to be
1.3-1.5 eV [284]. It has a disordered spinel structure, in which Cu®* and
Fe?* ions can occupy Td and Oh sites [ 290,291 . The occupation degree
of both ions on Td and Oh sites vary depending on the synthesis method.
In addition, the CuFe,0,4 CB position was also located above 0 Vg by
H: generation detection on CuFez0s when used as a photocatalyst
[292].

Sivula et al. compared the PEC performances of MgFe20s and

CuFes04 with of ZnFes04 [276]. MgFe204 and CuFez04 have a
direct bandgap 0 and 1.3 eV, respectively. MgFes04 and CuFes04
could generate photocurrent densities of — 0. 0.30 mA/cm?,

respectively, at 1.23 Vg in NaOH electrolyte with H,0, as a hole
scavenger. Based on those results, the charge-carrier separation effi-
ciency of MgFe,04 and CuFe,04 is determined to be 2% and 3%,
respectively. The efficiency is much lower than that of ZnFe204 (12%)
reported in the same paper. The authors claimed the flat-band potentials
of MgFez04 and CuFes04 to be —0.65 and —~0.8 Vgug using the onset
photocurrent measured for Hz0s. However, it cannot explain if the
positive flat-band potentials are insufficient doping level or fast surface
recombination. In many papers, the limitation of MgFe,0,4 and CuFe,0,
is similar to those of Fe,04 and ZnFe,04 The improvement of PEC
properties of those spinel structures depends on their preparation
methods.

3.6.2. Temnary tungsten oxides

One of the most studied materials with a bandgap of 2.2 — 2.3 eV is
CuWOy4 [293]. CuWO4 has several advantages compared to WOj3 in
terms of a smaller bandgap, allowing greater utilization of visible light.
The reds andgap energy is due to the upward shift of VB as hy-
bridized Cu 3d and O 2p orbitals; however, the CB remains similar to
that of WO, [294]. In addition, CuWO, is claimed to be stable in pH 7 -
9, in which WO, is unstable. [295-297 | The samples of CuWO, and WO,
photoanodes were synthesized with electrodeposition. CuWO 4 exhibited
a very stable photocurrent for 12 h, while WO3 experienced a contin-
uous photocurrent decay [28,294]. The data proved that CuWO4 is more
durable than W03 during water oxidation without any additional
oxygen-evolved catalyst. The works suggest that CuWOy is thermody-
namically stable against photocorrosion at a slower rate than water
oxidation.

Although CuWO, exhibits a relatively stable performance, it appears
to have poor charge carrier separation. Smith et al. investigated
photocufint generation using CuWOy thin film in phosphate buffer
solution using H203 as a hole scavenger. They reported that the charge
carrier separation of porous CuWO4 film prepared with spray pyrolysis
was 3% at 1.23 Vgyg [298]. The utilization of H20» will give a current
doubling effect that delivers a biased value of charge separation
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efficiency. The actual value may be lower than the reported one [299].
Furthermore, Hamann et al. confirmed the current doubling effect of
Hs03 by investigating the oxidation of sulfite and H203 in borate buffer
at pH= 9. By comparing photocurrents generated with oxidation of
H,0,, H,0, and sulfite in borate buffer. The photocurrent obtained from
H,0, oxidation is higher than that for sulfite oxidation. [300 | The sulfite
oxidation induced an onsel ntial shift from 0.85 to 0.6 Vyyug
compared to water oxidation. The result reveals that the main challenge
of using CuWO4 photoanodes is poor charge separation, and water
oxidation is not a limiting factor. Additional co-catalyst of oxygen evo-
lution cannot significantly enhance the water oxidation due to its
intrinsic high recombination rate, except manganese phosphate as the
co-catalyst in a CuW0,/ WO, composite photoanode [ 28,301].

As discussed in the previous section, doping is a good strategy for
designing photoanode. The improvement in charge separation, carrier
density, and charge transport properties in ternary oxide also can be
done with atomic doping. Smith et al. incorporated Fe** into a CuWO4
lattice, substituting the octahedrally coordinated Cu®* with spray py-
rolysis [298]. It is noticed that the doped CuWO4 exhibited an increase
in photocurrent for water and H203» oxidation at 1.23 Vgyg in neutral
phosphate buffer. Although the photocurrent is improved, the role of the
dopant was not clearly determined, and no direct evidence was observed
in the charge carrier density. In addition, Co®*, Fe**, and Zn®* as
dopants to substitute Cu** were also demonstrated to advance the PEC
performances [28,302]. Besides the doping, H,-treatments were also
employed to increase the carrier density and charge carrier separation of
CuWOy4 [303,304]. It is de ated by Diao et al. by annealing
CuWO4 film in a 5% Ha-diss Ar at 250 “C. The photocurrent den-
sity enhanced from 0.30 to 0.45 1Iu'&/c1112 at 1.23 Vgue in a neutral
phosphate buffer [304]. Moreover, the carrier density was improved by
2.7 times, confirmed by Mott-Schottky analysis. The importance of Hy
treatment is to increase W°* concentration to balance the positive
charge oxygen vacancy.

The other crucial improvement of CuW0O, is decreasing the bulk
resistance of a material. For instance, the additional multi-walled carbon
nanotubes (MWCNTs) to CuWO4 induced an alternative charge-carrier
pathway [305]. In the study, spray-pyrolyzed CuWO4 films were
added with MWCNTs with a MWCNT:CuWO, precursor weight ratio of
1:10,000. ever, the increase of photocurrent of water oxidation in
the carbo buffer solution was not obvious, as the current change was
from 0.20 to 0.225 mA/cm? at 1.23 Vyy: Therefore, the nanostructured
films with a particle size smaller than the charge carrier diffusion len
which has been discussed, is an important strategy to improve the
charge carrier separation. It “Eetemlined that the hole diffusion
length of CuWO4 was — 30 nm with time-resolved microwave conduc-
tivity (TRMC) measurements [ 306 ]. The relatively small diffusion length
of CuWOy is a challenge to nanostructuring materials that can enhance
bulk charge separation. Recently, several attempts were done to nano-
structure CuWO, electrodes with high surface area, including the
nanostructured WO, [296,304,30Z1Li et al. prepared a CuWO, pho-
toanode with vertically oriented 4 nanoflakes and showed the best
photocurrent only reached ~0.4 mA/em? at 1.23 Vg due to surface
states [304]. The presence of surface states in CuWO4 photoelectrodes
was investigated and the results showed a possible cause for this low
photrent. Barlett et al. fabricated a dense polycrystalline CuWO4
film by spin-coati sol-gel precursor and studied the presence of
surface states with electrochemical impedance spectroscopy (EIS) [205].
Mott-Schottky analysis was used to reveal the Fermi level pinning of
CuWO,, which was found in the potential region of 0.81 — 1.01 Vg as
low frequencies were used. At a higher frequency, the Fermi level
pinning is disappeared. [t was observed that the Fermi level pinning was
at the same potential region in the dark and light-illuminated condi-
tions. The data revealed that the Fermi level was pinned at the perma-
nent surface states in their CuWO4. However, the particular position of
the Fermi level could not be determined. In addition, they also discussed
that the surface states limit water oxidation rate and serve as
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recombination centers that cause a late photocurrent onset. The Fermi
level pinning was also investigated by Hamann et al. that the atomic
layer deposited CuWO4 films did not show Fermi level pinning in
Mott-Schottky analysis in dark and illuminated conditions [309]. They
proved that the surface states were available with Bode plots, cyclic
voltammetry (CV), and EIS analysis. The surface states are formed only
during electrochemical or photoelectrochemical water oxidation. Based
upon the results, those surface states in CuWOs electrodes are not
intrinsic states, suggesting they are formed due to water oxidation in-
termediates. They also concluded that the intermediates recombined
with electron in CB were responsible for the photocurrent difference for
sulfite and water oxidation.

Besides the challenges of bulk recombination and existing surface
states, CuWO, possesses relatively wide bandgap energy. Therefore, an
effort to decrease its bandgap was conducted to improve the light ab-
sorption capability. Choi et al. synthesized solid solutions by combining
CuW04 and CuMoO4 to form CuW;_Mo,04 films with electrodeposi-
tion and annealing treatment at 500 “C in air [309]. The as-prepared
CuWy 35Mop 504 photoanode decreased its bandg om 2.3 to
2.0 eV. Subsequently, the photocurrent generation of asM. Oy
photoanode enhanced for water oxidation from 0.06 to 0.15 m. at
1.23 Vg in a neutral phosphate buffer. On the other hand, density
functional theory (DFT) calculations revealed that Mo doping decreases
due to the lowered CBM without raising the VBM, thus thermodynam-
ically unfavorable for HER. Most studies suggest common strategies to
improve CuWOQy; there is no new improvement in the approach to
separate the charge carrier. Further attempts to improve the PEC
properties of CuWO4 as a single light absorber are challenging. Espe-
cially compared with ternary metal ferrites, the CB and VB CuWO,4 are
less favorable, suggesting CuWOy is less promising for a photoanode
application.

the ternary oxide metal ferrites are more promising than CuWo,,
Fe,;WOg with a bandgap of 1.5 - 1.7 eV may be favorable for develop-
ment. Nevertheless, only a few studies reported the PEC performances of
FeaWOg [310,311]. FeaWOg has several limitations when used as a
photoanode for a PEC-WS process. Abdi et al. fabricated FeasWOy thin
films with spray pyrolysis and found their flat-band potential at
0.6 — 0.65 Vgug using Mott-Schottky analysis [311]. Furthermore, the
VB position is determined with ultraviolet photoelec spectroscopy
(UPS) measurements and the result shows it is t 1.7 eV below the
Fermi level. As a result, the CB position is very close to the Fermi level
and limits the photovoltage gain for water oxidation. Another major
limitation of FeaWO is its relatively low absorbance coefficient with
long o~ ! of 1000 nm at ) = 450 nm, which reveals that Fe; WO is not a
good light absorber [311]. The charge carrier separation and hole
diffusion length of FeaWOg film were only 5% and 10 nm, respectively
311]. After some studies of this material, the unfavorable band edges,
poor light absorption, and severe charge recombination make FesWOg
not a promising photoanode for the PEC-WS process. As a result, More
work is required to improve the iron tungsten-oxide-based photoanodes
to overcome all the limitations.

3.6.3. Termnary vanadate oxides

One of the promisi d common termmary vanadate oxides for
photoanode material is n-type BiVO4 with a bandgap of —~2.4 — 2.5 eV
[270]. BiVO4 is reported to have a flat-band potential lower than
hydrogen reduction potential at ~0.1 Vgyg [312-319]. Most photocur-
rent onset appeared at —~0.25 Vg has been demonstrated for water
oxidation as BiVO, was composited with co-catalysts [312-317]. As the
photocurrent onset could achieve at 0.25 Vg, the photovoltage of
BiVOy is equivalent to —1 V for water oxidation, which is very rare in
many photoanode materials. This feature makes BiVO4 an exciting
material for photoanode development. Consequently, BiVO4 is poten-
tially used for a no-external-biased WS process when coupling with a
photocathode (e.g. p-5i, p-Cu20) which photovoltages for water reduc-
tion are limited [312]. Another advantage feature of BiVO4 is the
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excellent charge carrier separation that reaches > 90% at 1.23 Vgug. As
a comparison, typical oxide-based photoanodes only exhibit charge
carrier separation efficiency of < 10% at 1.23 Vgyg [312,313]. Although
at low bias potential, BiVOy still indicates 70% charge carrier separa-
tion, approximately at 0.6 Vg [313]. In addition, the charge recom-
bination rate of BiVO, is not as high as many other oxide-based
materials. For instance, the surface hole can ultimately be us sul-
fite oxidation, in which the sulfite oxidation can reach 100%. In other
words, the photocurrent onset for sulfite oxidation is very close to the
flat-band potential of BiVOs. Therefore, when BiVO4 is composited with
another oxygen-evolved catalyst, the water oxidation rate can be
enhanced, equivalent to that of sulfite, indicating that the photocurrent
onset for water oxidation is very close to its flat-band potential. Another
advantage of BiVO, is stability against photocorrosion, in which the
photocorrosion rate is relatively low. The phenomenon indicates that
the holes are easily consumed during the interfacial charge transfer re-
actions. As a result, the PEC cell with BiVO4 commonly performed an
unbiased WS process for at least 1-h stability in composited cells, as
shown in Tables 8 and 9 [272,312,316,320,321].

Besides bismuth vanadate, copper vanadates also received growing
attention as photoanode candidates for the PEC WS process. The first
investigation on copper vanadates (y-Cu3V,0g) was done by Neale et al.
[327] The copper vanadates were prepajwviﬂl dip coating FTO sub-
strate into CuyV,05(0OH),e2 H,0 solution followed by annealing to form

4V20q. The interconnected 20-nm nanoparticles of y-Cu3V,0g with
a hole ion length of ~20 — 40 nm could deliver a photocurrent of
10 pA/em? at 1.23 Vgyg during water oxidation reaction at pH= 9.2 in
borate buffer. [328] The CuO-V:05 phases were reported as _copper

date phases with bandgaps of —2eV [32 8,'320].@?&6&
p-CusVa07, y-CuzVaOg, a-CuV20g, CugyVeOas, and CusVa0ip have been
studied as photoanodes for solar-water splitting [327,328,330,
331-335]. The bandgaalues of all these copper vanadates exhibit a
bandgap of 1.8 _2.0 eV, which is favorable for a visible-light absor-
bance. Neverthel the obtained photocurrent for water oxidation was
still below 100 pA/em? at 1.23 Vgug, regardless of the preparation
conditions and phases. To improve the photocurrent, one of the strate-
5+ replace V°" ions
in temary vanadate oxides, such as BiVO4, can effectively increase the
carrier densities of materials [336,337]. For instance, Neale et al.
showed that Mo doping of y-CuyVyOy successfully enhanced the
photocurrent density from 10 to 25 pA/em? at 1.23 Vg at pH= 9.2 in
borate b [327]. It was confirmed that the increased photocurrent
was due to the enhanced carrier density, as observed by Mott-Schottky
analysis. The onset potential was not shifted in water and sulfide
oxidation reactions. Choi et al. prepared Mo- and W-codoped Cui1 VaOas
by preparing CuO nanofiber films and annealing with a VO{acac)s so-
lution containing Mo or W precursors [334,338]. The incorporation of
Mo and W was confirmed with peak shifts to lower two-theta in XRD
analysis. Mott-S v plots indicated a decrease in the slope and a
negative shift in the flat-band potential, suggesting an increase in the
carrier concentration. The highest photocurrent density was achieved
with W-doped Cuy{V0s film and reached a value of 70 pA/cm? for
water oxidation at 1.23 Vgyg in borate buffer. Moreover, the onset po-
tential was shifted from 0.99 to 0.87 Vgrug for water oxidation.

Another triclinic FeVOy4 is promising for photoanode since it can
form under ambient conditions. The potential of triclinic FeVO4 as a
photoanode was introduced by Sayama et al. [339]. The bandga
FeV0, is —~2.0 eV, smaller than that of BiVO, ﬁ,:}cm 344]. The
flat-band potential of FeVOQ, is about 0.7 V below the water reduction
potential that limits the photovoltage to ~ 0.5 V. [345] The reported
performance of FeV04 remains relatively low and the improvement of
photocurrent generation with substitutional doping into the V-site is one
of the possibilities. Baeg et al. doped 5% W to FeVO4 photoanode by
spin-coating on FTO substrates followed by annealing [ 342 |. The doping
of W was proved with a peak shift in XRD analysis due to the larger ionic
radius of W®* compared to V**. The pristine FeVOy film exhibited an
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Table 8
BiVO-based photoanodes with solar cells to support the external bias of cells.
BiVO,-based photoanodes Power Systems Electrolytes T perational STH (%) References
(mA/em?)
W:BIVO,/CoPi Sisolar cells (5i5Cs) Carbonate (pH= 7) 3-42 3.6-5.2
MocBiVO ,/CoCi CHyNHPbl, Carbonate 3.5 4.3
(pH=9)
Mo:BRO ./ FeOOH,/NIOOH and Ti:Fea0y/TiO./NiFeOx Si-8Cs onate 4.5 5.6 312}
w 9) 32 3.9
Mo:BiVO . /FeQOH /NiOOH Perovskite 508 (FAga3Csg 1 7PbI,Br) Phosphate (pH=7) 57 7.0
Mo:BiVO ,/FeOOH,/NiOOH CH3NHPbI Phosphate (pH= 7) 5.0 6.2
Mo:BiVO ., FeOOH,/NiDOH Cua0/Gas04/Ti0y Borate 25 3.0
(pH=9)
i Mo doping effects were negligible, indicating severe bulk recomb‘mati
Table 9

Single-photon-absorber BiVO,-based photoanodes for water oxidation with
external bias.

Electrodes Electrolytes Onset Jat References
(Ving) .23V
(maA/
m =
WiBIVO,/CoPi FPhosphate 0.30 4.0 321]
(pH=7)
1,/ NiFe0,-B Borate (pH-9)  0.22 4.9
W'{VO,‘;'NEFeOOH Borate (pH=9)  0.25 38
BiV0,/FeDOH /NiOOH Phosphate 0.2 4.5
(pH=7)
BiVO,/FeOOH/NIOOH  Borate (pH=9)  0.32 59
BiVO:/FeOOH/NIOOH  Borate (pH=9)  0.24 47
[N, treatment)
Mo:BiV0 4,/ FeOOH/ mnane 0.24 5.0 312]
NIOOH (H. (pH= 9)
treatment)
Mo:BiVO ./ FeDOH/ Phosphate 0.21 5.8 320]
NiQOH {pH=7)
[nanoccone substrate)
Mo:BiVO 4/ FeDOH/ Phosphate 0.22 6.0 322}
MNiQOH (pH=7)
{inverse nanocone
substrate)

increased photocurrent generation by 50% at 1.23 Vg in phosphate
buffer with an onset pot f ~0.7 Vige. IPCE of the W-doped FeVO,
photoanode could reach a maximum value of 6.5% at 400 nm with an
external bias of 1.7 Vyyg. Besides the doping method, nanoporous
morphology is a crucial strategy to shorten the charge extraction path
length of FeV04 [343]. One of the methods to prepare a nanoporous
FeV0y film is using a drop-casting method with citric acid to provide
pore formation. The pore size and diameter were observed with SEM
images, showing interconnected nanoparticles with diameter and pore
sizes of ~50 - 100 nm and —50 - 200 nm, respectively. The photocur-
rent of nanoporous FeVO, film for water oxidation is 100 p.z'k,a’cm2 at
1.23 Ve The generated photocurrent with pristine FeVO, photo-
anodes remains low. In the other group, Abdi et al. performed thorough
studies on pristine and Mo-doped FeVO4 photoanodes to investigate the
origin of this low photocurrent generation [345]. After annealing, the
spray-pyrolyzed FeVO4 and Mo-doped FeVO4 films on FTO exhibited
densely packed particles with a diameter of ~500 nm and thickness
varied from 25 to 800 nm. However, the sample with 200 - 400 nm
thickness could generate the highest photocurrent. The incorporation of
Mo into the lattice was also confirmed with a slight shift in XRD peaks to
lower two-theta values. The 2% Mo-doped film exhibited the highest
photocurrent generation, supported by a decrease in the Mott-Schottky
slope to indicate an increase in the carrier concentration. Flat-band
potentials of both pristine and 2% Mo-doped FeVO4 were the same at
0.7 Vgug. The increased photocarrier separation is observed, changing
from 2% to 2.5% at 1.6 Vgug. After Mo doping, the water oxidation ef-
ficiency was enhanced by 20% at 1.6 Vgue. Those results reveal that the

is one of the significant limitations of FeVO4. In addition, IPCE values of
pristine and Mo-doped FeV04 photoanodes for water oxidation at
375 nm were 2% and 8%, respectively, in neutral phosphate buffer at
1.6 Vgue. Time-resolved microwave conductivity (TRMC) analysis
indicated the hole mobilities of FeVO4 and 2% Mo-doped FeVO4 were
4.6 x 10%and 1.3 x 107* em? V' 57!, respectively. The hole diffusion
length was also enhanced from —~2 nm to ~7 nm after Mo doping. As the
diffusion length is concise, improving the bulk separation by nano-
structuring may be difficult.

Besides the most investigation on triclinic FeVO4, some studies on
otheriron vanadates, such as FeaVOa, FeVa0y, Fea V4011 have been done
[346,347] iron and vanadium species (Fe?*, v**, and V*") in iron
vanadates may not be stable during PEC water oxidation. As a result, the
photostability of those compounds needs to be investigated carefully.
Bhattacharya et al. performed a photostability analysis for water
oxidation in a neutral phosphate buffer at 1.6 Vpyg. The results indi-
cated that FeV,0,4, Fe,VO,, and FeVO, exhibited a significant photo-
current decay after 30 min [346] The studies suggested iron vanadates
suffered from short hole diffusion lengths and severe bulk recombina-
tion. Successtul atomic doping with considerable charge separation has
not been demonstrated. Therefore, nanostructuring can be one of the
strategies to overcome the extremely short hole diffusion lengths.
Another limitation of iron vanadates is the flat-band position is very
positive (> 0.5 Vpyp) even with doping [345,347]. The investigation
suggests that the iron vanadates have the same issues as copper vana-
dates when used as photoanodes in a PEC-WS process.

4. Conclusion and outlooks
2

In summary, PEC water splitting is a promising technology for
generating hydrogen fuel using sunlight. However, the -WS process
efficiency is still in the early commercialization step. The gZgress in
developing photoanode materials in the last ten years hints at the charge
separation and transfer in modified photoanode materials. The basic
required parameters in designing photoanodes and some crucial per-
formance metrics have been briefly discussed. An improved photoanode
must indicate cathodically shifted onset photocurrent with a plateau
curve to show a good fill factor and high stability performance. Some
essential strategies to improve photoanode performances include
nanostructuring, co-catalyst, surface passivation, heterojunction (type-I1
and Z-scheme junctions), gradient doping, and application of ternary
oxide-based photoanodes are reviewed.

Some crucial outlooks related to the design of semiconductor nano-
materials for PEC photoanodes are emphasized as follows:

1. Nanostructuring allows a higher aspect ratio to make a shorter hole
diffusion length and the charge separation effective with improved
light absorption properties. Therefore, 2D materials with a unique
morphology offer a promising alternative for photoanode design.
Integrating 2D materials with metal es (MOs) is an exciting so-
lution to overcome their drawbacks of narrow light absorption, short
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charge lifetime, high charge recombination rate, and poor structural
stability. Additional strategies with suitable co-catalysts are required
to further improve the redox activities on the electrode, reduce the
reaction energy barrier, and accelerate the charge transfer for
boosting surface chemical reactions. However, the uncontrollable
photo corrosion due to excess holes on photoanode surfaces during
the PEC-WS process causes material instability. An intermediate
inert thin layer is beneficial to add at the interfaces between semi-
conductor layers with pretty different CB and VB band positions to
favorably transfer the generated electron and hole. The fast-moving
carriers without delay on the electrode surface help to decrease
photo corrosion and improve cell stability. Therefore, introducing
the intermediate layer with significant energy band differences can
be used as a transition for effective transmission and separation of
carriers, thus improving the performance of photoanode PEC-WS
process. In addition, a selected suitable electrolyte with an appro-
priate pH value also plays a vital role in photoanode sta A

. Designing photoanodes with heterojunction formation is a great
strategy to improve light absorption, charge carrier separaﬁolh
redox capability with high energy conversion efficiency. A semi-
conductor with a wide bandgap can be combined with another witha
smaller bandgap to optimize the light absorption property and
simultaneously maintain a strong redox potential. Nevertheless, it is
indicated that the type-II heterojunction sacrifices the generated
photovoltages as the char: igration between two CBs and VBs in
semiconductor materials. As a result, Z-scheme charge transfer in
heterojun is intensely explored to overcome a lower photo-
voltage in type-II heterojunction. The Z-scheme heterojunction will
drive the water oxidation on the lowest VB of one semiconductor and
the reduction reaction on the highest CB of another semiconductor.
This mechanism obviously induces charge separation with an effi-
cient pathway. The advantage of Zscheme heterojunction is the
efficient separation of photocarrier while maintaining a strong redox
potential. The coexistence of high«afﬁcienqu phase separation
and strong redox capability contributes to a highly efficient PEC
water splitting. Nevertheless, the design and characterization of Z-
scheme heterojunctions are challenging and need more effective
methods for the identification of Z-scheme heterojunctions.

. The attempt with gradient doping to promote directional charge
transport is crucial to improve PEC-WS efficiency. Gradient doping
will form a gradient energy band structure and expand the depletion
layer with better charge separation in a photoanode. Doping alien
elements will increase carrier concentration and conductivity.
However, if the dopant is excessive, it will act as a recombination
center, inducing a smaller depletion layer and affecting carrier sep-
aration. An appropriate dopant with a specific dose will increase the
light response of materials by creating a new energy level in the
forbidden band. In a particular case, it was found that the gradient
oxygen doping in TiO, promoted PEC performances by increasing
the conductivity and carrier concentration and avoiding severe
recombination in uniform oxygen doping. Therefore, the gradient
energy band widened the depletion layer to promote effective
directional charge transfer and separation.

. The strategies with nanostructuring, co-catalyst, surface passivation,
heterojunction, and doping on photoanodes have been demonstrated
to overcome the sluggish water oxidation steps. All the attempts of
photoanode do not use only a single semiconductor. Recently, the
utilization of multiple semiconductors has been a significant interest
in constructing photoelectrode. An effective heterojunction of mul-
tiple semiconductors still has issues with unclear charge transfer and
separation, which must be addressed carefully to differentiate type II
or Z-scheme heterojunctions.

. Some factors with physical and chemical properties, such as lattice
constants, thermal expansion, and band position, should be consid-
ered in the hetergjunction formation. Although exploring new sys-
tems of nanomaterials is crucial for current heterojunction
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engineering, the mechanism for improving the heterojunction in-
terfaces is still the primary direction of future research instead of
selecting materials for trial and stacking.

6. In addition, the recent studies on ternary oxide-based photoanodes,
such as ternary iron oxides, tungsten oxides, and vanadates, give
some hints at improving the PEC properties. Although the termnary
oxide photoanodes are promising, they still need some modifications
with doping, nanostructuring, co-catalyst, nitrogen or hydrogen
treatments to enhance the water oxidation property. An essential
study in the ternary oxide is that the incorporation of different metal
doping can vary the energy band position in the oxide, thus varying
the PEC properties. The most important ternary oxide photoanode is
BiVO,, with many favorable PEC properties, such as the appropriate
band position and photostability. Therefore, Modifying BIVO, by
cocatalyst, doping, heterojunction, and coupling with solar cells is
interesting to obtain external-bias free PEC water-splitting cells.
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