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GRAPHICAL ABSTRACT

ARTICLEINFO ABSTRACT

Keywords: Solar-driven water evaporation is a promising technology for high efficiency water purification by absorbing
Carbon nanotube solar energy and converted into localized heat. Herein, we report a low-cost approach for developing a novel
ﬂ photothermal materials based on combination of ZrOz nanoparticles (NPs) with Ni doped carbon quantum dots

1 doped carbon dot (Ni@CQDs) and multi-walled carbon nanotube (MWCNT) coated on melamine foam (MF) surface. The formation

Solar dri i
ar driven water evaporation of Ni@CQDs was confirmed by red-shift ahgggbance and fluorescence. Moreover, the shift in XRD diffraction

angle indicated the Ni@CQDs incorporate the Zi d carbon framework of MWCNT. The composite
absorber demonstrategexcellent solar-water evaporation 1.95 kg m~ 2 h~! and high evaporation efficiency
of 89.5%, which is t improvement as compared t e water (0.19 kg m 2 h ) under 1-Sun irradiation.
The enhancement in evaporation rate is mainly attribu the strong light absorption of 94% and extremely

low thermal conductivity of MWCNT/ ZrO»/Ni@CQDs (0.038 W m™! K™!). The composite absorber capable of
continuous operation of 6 cycles under 1-Sun irradiation, indicates high durability and completely reduced
organic dyes (99.8%). Accordingly, the novel design of MWCNT/ZrO2/Ni@CQDs as composite absorber as high
performance solar-driven water evaporation and wastewater purification.
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1. Introduction

In the past decades, increasing water pOlllm and the lack of water
for agricultural and economic growth, the clean water scarcity has
become an urgent worldwide issue [1]. Solar energy was known as
renewable and abundant energy resource, where tremendous effort have
been devoted for highly efficient photothermal research with the goal of
addressing serious water shortage, solar-thermal conversion with
solar-irradiation driven water evaporation is required [2]. The concept
of localized interfacial heating has been presented to improve the effi-
ciency of water evaporation system with photothermal materials prop-
erties of, and highly efficient photothermal conversion, broad solar
absorption, low thermal conductivity, heat management to minimize
heat loss, thermal/chemical/photostability for practical applications
and efticient water transport to ¢ confirm continuous water vaporization
based on porous structure [3]. Recently, several photothermal materials
have been developed so far for conversion of solar energy to heat mainly
focused on conjugated polymers [4], plasmonic [5], biomass [6],
carbon-based [7] and semiconductor materials [8]. Among other ma-
terials, carbon nanotubes (CNT) is the most commonly used as photo-
thermal materials due to broadband solar harvesting, low specific heat
and stable physicochemical properties [9], however have high thermal
conductivity that lead to unnecessary heat dissipation [ 10]. Therefore, it
is essential to obtain CNT with high photothermal conversion capability,
while simultaneously low thermal conductivity.

Carbon quantum dots (CQDs) mainly absorb a wide range of solar
spectrum, large surface area-to-volume ratio, efficient heat generation
and low thermal conductivity, which is beneficial for heat localization
for solar water evaporation [11,12]. Previously, CQDs incorporated into
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wood matrix [12] and polypyrrole/CQDs modified MnOs nanowires
[13] were reported and demonstrate a significant enhancement in
evaporation rate and efficiency. Zirconia oxide nanoparticles (ZrOs NPs)
show surface hydrophilicity [14], strong and broad visible-light ab-
sorption [15], low thermal conductivity [16] and good chemical sta-
bility [17]. A ingly, the combination of CQDs and Zr0O, NPs for the
application of solar driven water generation is worthy to be investigated,
since Zr0: could act as electron acceptor from CQDs during light illu-
mination process and provides more heat energy into the evaporation
system, meanwhile CNT improved the diffused reflection of light.
Herein, a novel combination of multi-walled CNT(MWCNT) with
Zr03 NPs and Ni doped CQDs (Ni@CQDs) via low-cost hydrothermal
method were presented a strategy for improving light absorption and
lower thermal conductivity by developing. The composite absorber was
brush coated onto melamine foam (MF) surface as light-absorbing layer,
where MF substrate guarantee fast water transportation. The composite
absorber revealed the MWCNT/ZrOo/Ni@CQDs highly promising for
high water evaporation rate and stable solar-driven water evaporator.

2. Experimental
2.1. Chemicals

Graphitized MWNTs (diameter 8-15 nm) and Zr0O, NPs (particle size
10-15 nm) were purchased from XFNANO and used without further
purification. Glacial acetic acid and | chloride hexahydrate was

procured from Smartlab, Indonesia. Poly(vinyl) alcohol (PVA) Mw
89,000-98,000 was acquired from Sigma Aldrich, Singapore.
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Fig. 1. (a) UV-Vis absorption, (b) fluorescence spectra of CQDs without and with Ni*" ion; (¢) Raman spectra and (d) Optical absorbance of MWCNT based

solar absorber.
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Fig. 2. SEM images of (a) MWCNT and (b) MWCNT/ZrOz; NPs/Ni@CQDs; (¢) XRD and (d) FTIR spectra of composite absorber.

2.2. Preparation of CNT/ZrOs/Ni@CDs solar evaporators

Crab shells was cleaned with distilled water to remove impurities
and dried in oven for 8 h at 90 “C. Subsequently, the dry shell crab was
grinded using laboratory high speed blender until fine powder was ob-
tained. 1 g of shell crab was mixed into 1% glacial acetic acid (70 mL),
followed by ultrasonication using ultrasonic probe (Sonics VibraCell
VCX750) wi er of 260 W (amplitude 35%) for 1 h. For Ni@CQDs,

of NiCl, added into above solution, followed by stirring for 30
min and hydrothermal at 150 “C for 4 h. Afterwards, the solution was
centrifuged and the supernatant was collected for purification process.
50 mg of CNT and 50 mg of ZrO mixed with supernatant solution
(50 mL) via ultrasonic for 1 h and the solution was heated at 180 °C for 8
h. Then, the solution was centrifuged and filtrated, followed by washing
ml deionized water and ethanol. Afterwards, the nanocomposite was
dried in vacuum oven at 60 °C for overnight. The MWCNT (50 mg) or
nanocomposite powders (50 mg) was mixed into 10 wt% PVA and the
solution was heated at 90 °C for 1 brush coated on the surface of
MF with constant weight of 30 mg, followed by drying in vacuum oven
at 70 °C for 12 h.

2.3. Characterization

The optical properties of CQDs without and with Ni dopant was
measured by Jenway 7315 and Ocean Optics USB 2000 + spectrometer
equipped with fiber coupled LED 375 nm. Morphologies and

microstructures of samples were observed with a ZEISS EVO® MA 10
scanning electron microscope (SEM) and the elemental analysis was
determine using energy dispersive X-ray (EDX). The mimtructural and
functional groups of absorber was analyzed using x-ray diffraction
(XRD) Rigaku MiniFlex and fourier transform infrared spectroscopy
(FTIR) Bruker Alpha II. The surface wettability of absorber was
measured using contact angle goniometer ITNANO instruments (Medan,
Indonesia) with high speed mini camera. Thermal conductivity of the
absorber was determine using thermal conductivity analyzer C-therm/
TCi based on modified transient plane source measurement. The surface
temperature of the absorber was recorded using thermal camera FLIR
c2.

2.4. Solar steam generation experiments

The water evaporation were determine using custom setup based on
simulated light source of halogen lamp (OSRAM 64627 HLY, Germany)
at relative humidity of 48% and temperature of 28 “C. The light intensity
was adjusted by the distance between the lamp and the surface of the
absorber and the simulated light intensity was measured using a hand-
held optical power meter. The digital analytical balance Mettler Toledo
AL204 (precision 0.1 mg) was connected to PC and used for recording
the mass changes of water evaporation as function of time. The ther-
mocouple type K was used to probe the surface temperature connected
to PC. The evaporation efficiency was calculated according to following
equation:
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Fig. 3. (a) Time lapse photographs of water droplets onto the surface of composite absorber; (b) Thermal conductivity of the MWCNT and its composite absorber;
Thermal images of surface temperature of absorber floating on beaker filled deionized water under 1-Sun exposure of (¢) MWCNT and (d) MWCNT/ZrO; NPs/

Ni@CQDs absorber, respectively.

- mihy + Q) on)
i

hpyery = 1-91846 % 10° [T /(T,-33-91))* (2

Q =C (T-Ty) (3

Where m refers to difference between mass changes under illumination
and dark condition, hy .

(kJ kg !) represents the latent heat required to evaporate water, T,
and Ty is steady evaporation and initial temperature of water (K), Q
means sensible heat of water of unit mass (kJ kg~ 1) and C refers to
specific heat capacity of water (4200 Jkg~' K™%) and ¢ represents en-
ergy input of light source.

3. Result and discussion

To understand the optical properties of the CQDs without and with

Ni dopant, UV-vis absorption and fluorescence spectra were analyzed,
tively as shown in Fig. 1a and b. The narrow absorption peak at
m and a weak shoulder at around 360 nm were correspond to the
-1 * transition of aromatic sp® domains and n-t * transition of C=0
bond, respectively [15] due to electron transitions from the carbon core.
The absorption peak was shifted to 304 nm for Ni@CQDs mainly due to
the Ni®* arranged with surface amino groups on the CQDs. This finding

is in good agreement with biomass-based CQDs [19]. As depicted in the
inset of Fig. 1b, the aqueous dispersion of the CQDs were blue-green
emission under UV lamp 375 nm, whereas Ni@CQDs it shows intense
fluorescence at similar concentration. The strong peaks could be origi-
nated by quantum effects of CQDs modified with metal ion Ni**. The
fluorescence spectra from crab shell powder showed the maximum
emission wavelength at 495 nm, meanwhile the peak at 460 and 530 nm
(green emission) were due to surface defects [13] and er confirmed
the formation of NiO NPs on CQDs [20]. Fig. 1c present the D and G band
peak located at 1341 and 1570 cm™ ' attributed to the defects and
in-plane vibration of graphite lattice, which is the main characteristics of
MWCNT [21]. Interestingly, it is found that the integrated intensity
ratios of D and G bands (I/1;) of MWCNT increased after introduction
of ZrO, NPs/Ni@CQDs from 0.39 to 0.51, revealing more disordered
and higher defect levels. Additionally, the peak at 2676 cm™! was
slightly shifted to 2683 cm™!, suggesting Ni@CQDs was effectively
attached on MWCNT surface, meanwhile peak at 273 cm ! was ascribed
to the tetragonal phase of ZrOs [22]. Fig. 1d displayed the absorption
spectra of absorber, where the average absorbance in the entire wave-
length range are about 77% and 94% for MWCNT and MWCNT/Zr0z
NPs/Ni@CQDs  absorber, respectively. The  MWCNT/ZrO,
NPs/Ni@CQDs composite absorber displays the optimum optical ab-
sorption performance, which covered the solar spectrum.

SEM images of the upper surface of MF absorber with was compared
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Fig. 4. (a) Physical photograph image of the solar evaporation systems for indoor system during steam generation, (b) mass changes as a function of time under 1 and
2-Sun irradiation, (¢) evaporation rate and efficiency of various absorber and (d) temperature changes of absorber as a function of time.

to show the influence of ZrO, NPs/Ni@CQDs on the microstructure.
Fig. 2a and b shows that the composite is comprised of 3D network
structure with interconnected MWCNT, aggregated structure and
forming a porous framework due to PVA. It can be clearly seen for the
composite sample that the ZrO; NPs was formed between interconnec-
tion of MWCNT and the Ni@CQDs was attached on the surface of
MWCNT clusters as further confirmed by elemental analysis EDX with
high concentration of Ni was detected (not shown here). The crystal
structure of the composite structure was determine using XRD analysis
as shown in Fig. Z¢. The sharp peaks in the XRD patterns of bare MWCNT
at 26.28 and 43.18° attributed to the (002) and (100) planes, respec-
tively, meanwhile peak at 20.46 © correlated to the semicrystalline of
PVA. The strong peak at 24.14, 28.22, 31.52, 34.20, 50.21 and 55.38°
correspond to the (011), (111}, (123), (002), (220) and (013) plane,
respectively of ZrOs characteristics in the monoclinic phase with
Ref. Code 00-024-1165 according to software analysis X' pert HighScore.
Interestingly, we found that the (002) peak of MWCNT composite was
slightly shifted to lower diffraction angle of 25.94°, which indicates the
large lattice spacing of the CQDs edges originated by mutual repulsion
between the electronegative functional groups of the CQDs [23]. This
result is consistent with recent report on CQDs grown on CNT surface
[24]. In addition, broad peak for composite located at 19.95° due to the
presence of CQDs, meanwhile (111) plane of ZrOs; NPs was shifted to
higher angle about 0.35°, which suggests the incorporation of Ni@CQDs
into the ZrOs and carbon framework [25]. To further understand the
functional group of the composite, FTIR analysis was analyzed as shown
in Fig. 2d. The intensity band at 3436 cm ! associated with O-H bonds

stretching of MWCNT and ZrO, NPs. Moreover, for ZrO, NPs the sharp
intensity band at around 752 and 657 cm ™! caused by the vibrations of
the Zr-O-Zr metal oxygen [26], whereas band at 1653 cm™! corre-
sponding to the carboxylate ions of Zr0,. However, for composites
sample displayed shifted to lower wavenumber due to tﬁpresent of
Zr03 NPs and Ni@CQDs. The peak at 1640 cm ! attributéd to the ab-
sorption of C=N/C—=0 [27] and the weak peak at 1078 cm ! can be
ascribed to the stretching vibrations of the metal-ligand bond [28].
The surface wettability of the material affects the rate of solar water
evaporation. Fig. 3a exhibits the contact angle of composite absorber
surface adsorbed water as function of time. The water droplet rapidly
permeates completely within 200 ms into the surface of MWCNT/ZrO,
NPs/Ni@CQDs implying the efficient water supply through the absorber
layer and essential for solar-to-steam generation performance. It is
noteworthy to note that there is negligible difference in surface wetting
between MWCNT/ZrOs NPs/Ni@CQDs. This finding indicates the
superhydrophilic characteristics of composite aanrber, which benefi-
cial from MF substrate [29]. Accordingly, Fig. shows thermal con-
ductivity of MWCNT and its composite are 0.04 and 0.038 Wm ! K,
respectively, which is extremely lower compared to normal water
(~0.6 W m ' K !). This result indicates the excellent thermal insulation
property owing to the low thermal conductivity of Zr0O: [30] and
Ni@CQDs, the lower thermal conductivity of absorber essential for heat
localization during the solar evaporation, thus promoting rapid evapo-
ration rate. The infrared images and the surface temperature change of
absorber were recorded under 1-Sun illumination by infrared thermal
camera. Fig. 3c and d displayed the surface temperature increases of
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Fig. 5. (a) Evaporation rate cycle performance of solar-driven steam evaporation rates with the MWCNT/ZrO; NPs/Ni@CQDs composite absorber, (b) Digital
photograph of experimental setup for wastewater purification; Photodegradability of (¢) methylene blue and (d) methyl orange and condensed water result based on

absorber under 1 Sun irradiation.

composite absorber, for the case of MWCNT/ZrO, NPs/Ni@CQDs, the
surface temperature rose sharply from 34.7 C to 50.1 °C under 1-Sun
illumination, which is slightly higher compared to MWCNT absorber.
The temperature rose rapidly to 43.30 °C for the first 1 min, demon-
strating that the MWCNT/ZrOz NPs/Ni@CQDs absorber potential for
rapid photothermal energy conversion. Besides, this finding explained
the heat localization property of the MWCNT/ZrO, NPs/Ni@CQDs solar
steam generator and consistent with extremely low thermal
conductivity.

In order to characterize the water evaporation performance, the mass
changes and temperature were monitored in real time during the solar
evaporation process using an analytical balance and digital thermo-
couple connected to a laptop were shown in Fig. 4a. Under 1 Sun irra-
diation, the water evaporation rates of pure water of 0.19 kg m2h7,
meanwhile the solar-driven steam ev@ation rates of MWCNT and
MWCNT /Zr0s NPs/Ni@CQDs are 1.71 and 1.95 kg m2 h™!, which are
9 and 10 folds increment than that pure water. The evaporation rate of
MWCNT /Zr0, NPs/Ni@CQDs absorl:a which is higher than the recent
report on graphene oxide (GO) of 1.30 kg m2h![31], modified
reduced GO/sodium alginate of 1.86 kg m2 h! [32], carbonized
towel-gourd sponges of 1.53 kg m~2 h! [33], MnOs nanowires modi-
tied CQDs of 1.68 kg m 2 h! [13]. There are two main reasons of the
improvement of evaporation rate performance, firstly photothermal
materials effectively localized heat on the surface and generate rapid
increase of stabilized surface temperature to 52.82 and 57.50 °C for

MWNCNT and MWCNT/ZrO, NPs/Ni@CQDs, respectively (Fig. 4c). In
contrast, direct heating bulk water with only increase of temperature to
36.10 °C after 1 h irradiation. Secondly, MWCNT /ZrO» NPs/Ni@CQDs
possessed lower thermal conductivity, which led to a large temperature
difference between the bulk water and the absorber surface in com-
parison with MWCNT-only absorber. Additionally, when the light off,
the surface temperature of absorber rapidly dropped, which is attributed
to interfacial heating caused by the polymer insulation layer of absorber.
Moreover, under 2-Sun irradiation, the evaporation rates for
MWCNT/ZrO, NPs/Ni@CQDs absorber could reach about 4.77 kg m 2
h~! with rapid temperature increased. In general, higher solar radiation
intensity provides a larger energy density, thus leading to a increase in
ratio of steam evaporation rates [34]. The solar-water evaporation ef-
ficiency o was measured by Egs. (1-3). From Fig. 4d, the net evaporation
rate of pure water, MWCNT, MWCNT/Zr0: NPs/Ni@CQDs absorber
were summarized and the evaporation efficiency of 10.9%, 81.3% and
89.6%, respectively under 1-Sun irradiation. Further increase the solar
intensity leading to evaporation efficiency of 89.8% MWCNT/Zr0,
NPs/Ni@CQDs absorber.

The reusability and stability of the MWCNT/ZrO, NPs/Ni@CQDs
composite absorber was subsequently confirmed by measuring the
evaporation rate under 1-Sun illumination for 15 cycles. As demon-
strated in Fig. 5a, the evaporation rate was maintained around
1.88 kg m 2 h™! with a small deviation of 7%, where each cycles rep-
resents the evaporation rate of water under 1-Sun exposure for 1 h. This
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result displayed the durability of the MWCNT/ZrOz NPs/Ni@CQDs
composite absorber and implying the thermal stability and mechanically
robust, which is promising for the production of clean water by solar-
driven steam generation.

To understand the capability of MWCNT/ZrO, NPs/Ni@CQDs
absorber on removing organic dyes namely, methylene blue and methyl
orange as pollutants were dissolved in water with concentration of
10 mg/L. Fig. 5b displayed the experimental setup of absorber float on
top of 50 mL methylene blue solution. As shown in Fig. 5c and d, the
strong absorption peaks of methyl orange (464 cm) and methylene blue
(664 nm) are reduced significantly (99.8%) after the solar-thermal pu-
rification as shown in the inset. This finding suggests that relatively
negligible organic dyes in the purified water and demonstrate strong
potential of MWCNT/ZrO, NPs/Ni@CQDs absorber for wastewater
treatment.

4. Conclusion

In summary, excellent solar driven water evaporation performance
was successfully developed via low-cost hydrothermal process of
MWCNT/ZrO, NPs/Ni@CQDs and coated onto the surface of MF as solar
absorber. The characteristics of MWCNT, ZrO2 and Ni@CQDs were
determined using UV-Vis, PL, SEM, XRD and FTIR. The photothermal
materials can effectively absorb 94% of wide light spectrum and
demonstrate superhydrophilicity surface. The fabricated MWCNT/ZrOz
NPs/Ni@CQDs demonstrate the highest water evaporation efficiency of
89.6% compared with MWCNT-only of 81.3%. The enhancement of ef-
ficiency can be explained due to extremely low thermal conductivity due
to the addition of ZrO, NPs and Ni@CQDs, strong light absorption and
efficient localize heat on the surface of absorber and generate rapid
increase of temperature of composite absorber. In the practical waste-
water purification process, organic dyes was significantly reduced with
MWCNT/Zr02 NPs/Ni@CQDs absorber under 1 Sun irradiation. This
work demonstrates an enhance yet simple strategy for development of
high-performance solar-driven steam generation absorber for drinking
water and wastewater purification.
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