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Abstrad:g this study, a novel MIL-100(Fe)@TiO, composite was synthesized and used as the adsor-
bent to remove Rhodamine B from synthetic wastewater through adsorption and photocatalytic degra-
dation. The composite was synthesized successfully using solvothermal methods. MIL-100(Fe)@TiO,
composite has excellent adsorption and photodegradation capahility for Rhodamine B removal. The
reusability of the materials was observed, with the conclusion that the material still had good adsorp-
nm and photocatalytic performance after five cycles of consecutive experiments. The adsorption
omerm, kinetic, and thermodynamic studies of the removal of Rhodamine B were also conducted.
nm Langmuir model represented the adsorption equilibrium data better than other models. The

etics of adsorption of Rhodamine B was presented well by pseudo-first-order. The thermodynamic
nzdy verified that the physisorption mechanism was more dominant than chemisorption. The
addition of Fenton was also proven to be successful in increasing the photocatalytic abilities of the
synthesized materials,

Keywords: metal-organic framework; photocatalytic degradation; thermodynamic; composite

1. Introduction

An emerging three-d lmeai(malpmmus crystalline framework class, metal-organic
frameworks (MOFs), exhibits ordered pore size and surface area, which is beneficial for
catalytic application [1]. MOF outperforms conventional photocatalytic semiconductor
materials in several factors such as framework versatility, huge surface area, and more
significant void volumes. Currently, MOFs have been widely @lized as novel types of
photocatalysts. This is due to the availability of electrons to be excited from the highest
occupiffl molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO)
due to LMCT (ligand-to-metal charge transfer), MLCT (metal-to-ligand charge transfer),
and 7-m* transition in aromatic rings’ properties when exposed to light irradiation [2].
Fe-based MOFs presented as high-grade photocatalysts among constructed MOFs due
to their intrinsic optical absorbance, stability, inherent optical responsiveness, and low-cost
synthesis [3]. Moreover, they have befilemonstrated to be effective heterogeneous photo-
Fenton-like, to produce OH radicals for the degradation of organic pollutants. However,
the poor adsorption ability towards dye molecules [4,5] and low efficiency of excitation
electron production and MOFs charge separation, contribute to limited efficiency in the
photocatalytic system [6,7]. Therefore, a pristine MOFs photocatalyst cannot provide
sufficient catalytic degrading efficiency and stability.
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In recent years, the plausible strategy of improving MOFs photocatalytic activity was
proven b)elcorpcarah'.ng semiconductors into MOFs. Amid a wide inorganic semiconductor
selection, TIO2@MOFs surpass their counterparts in lerms of a synergistic impact of high
adsorptifgZJand efficient charge excitation and transfer. For instance, Huang et al. [8]
reported that the impregnation of N-TiO; nanoparticles on MIL-100 (Fe) provides a great
mwrgisi‘ic effect through electron-hole recombination restriction, along with suitable
pore size and high surface area for proffifting the photocatalytic reaction for methylene
blue daadatil}n [8]. In another study, He et al. [9] introduced MIL-100 (Fe) on the P-25
matrix to extend the light absorption ability to the visi}:megim for efficiency degradation
improvement against heavy metals [9]. Moreover, Liu et al. [10] engineered a hierarchical
sandwich consisting of TiOEanosheets and porous MIL-100 (Fe) to improve composite
adsorption ability and limit the recoinaﬁon of photo-generated e~ / he pairs to pn)rate
the photocatalytic activity against methylene blue under visible light irradiation. The
interfaces between TiO2 semiconductors and MOFs provide @any suitable sites for photo-
generated electron transition, which significantly speads up electron transfer and reduces
electron-hole recombination. Asaiﬁunally, the aggregation tendency of pristine TiO; can
alsobe overcome by anchoring the MIL-100(Fe) on the TiO; surface. However, no study
exploits the possibility of TiO> anatase for MIL-100(Fe) composite. Based on the structural
configuration, TiO; anatase provides a unique structure with numerous defects that can
confine high oxygen content for electron confinement [11]. 22

In this study, we prepared novel photoc§Bllyst Fe-based MOFs (MIL-100(Fe)) grown
on the TiO; anatase surface to enhance the adsorption and photocatalytic degradation
of dyes [fh the assistance of H>05 and visible light. This paper selected rhodamine
B (RhB) as a terget emerging organic polf@ant, to evaluate the adsorption and photo-
Fenton performance of MIL-100(Fe)@Ti0,. Several adsorption isotherm and kinetic models
were utilized to provide the insight mechanism of adsorption of RhB on the composites.
Meanwhile, several process parameters such as catalyst ratio, catalyst dosage, and H;O,
content, which were co-existing inorganic aniofffn photo-Fenton degradation of RhB, were
evaluated with an additional study regarding the stabﬂimnd recyclability performance of
MIL-100{Fe)@anatase TiO>. A plausible mechanism for photocatalytic degradation of RhB
iia LED irradiation by MIL-100(Fe)@TiO, has been proposed.

48
2. Materials and Methods
2.1. Chemicals

The chemicals used in this study were ferric nitrate hexahydrate (Fe(NO;);-9H,0)
(CAS:7752-61-8, 99.95% purity trace metal basis), 1,3,5-Benzene Tricarboxylic Acid (H3BTC)
(CAS: 554-95-0; 98%), Titanium (IV) oxide (Ti0;) (CAS: 1317-70-10) anatase grade, 99.8% trace
metal basis), thodamine B (CosHa1CIN2O3) (CAS:548-62-9; HPLC standard > 95% anhydrous
basis), isopropy! alcohol (IPA) (CAS:67-63-0; ACS reagent > 99.5%), ’-benzoquinone (CgHsO;)
(CAS:106-51-4; reagent grade > 99.5%), carbon tetrachloride (CCly) (CAS: 56-23-5; reagent
grade > 999%) and afffflonium oxalate monohydrate (NH;»C>04-H>0) (CAS:106-51-4; ACS
reagent > 99%). All chemicals were procured from Sigma Aldrich, Singapore, and were
subsequently used.wi&mut additional purification.

)
2.2, Fabrication of MIL-100 (Fe)@TiO, Composite

Different molar ratios of TiO;:Fe{NO;3)3-9H;0 were used to synthesize MIL-100
(Fe)@Ti0); photocatalysts. The Fe(NO3)3-9H,0 solution concentration and mass of trimesic
acid were maintained at 63.31 mmol/L and 1225 mg. The theoretical amount of anatase
Ti0; for different MIL-100 (Fe)@TiO; combinations was calculated according to the mole ra-
tio of 3:07, 3:1.4, and 3:2.4 (Fe(NQO3)3-9H>O: TiO3). The as-synthesized photocatalysts were
named MxTy, where x and y correspond to the Fe(NO;):-9H,0: TiO; mole ratio of 3:0.7,
3:1.4, and 3:24 (for example, M3T} 7 defines the mole ratio 3:0.7 between Fe(NQO5);-9H,O
m:l TiO;). For the synthesis, 0.05, (.1, and 0.2 g of anatase TiO; were added to 63.31
mmol/L of Fe(NO3)39H,0 solution, followed by mixing and heating at 368.15 K for 120




Suslaiability 2022, 14, 10685

3of24

Tflmegi:
FGNO aH,0

B

e ___

Mixing for th

min. Then, the powders were acquired through multiple washes with DI water and cen-
trifugation for iron residue removal. Subsequently, the powders were re-immersed with 20
mL of DI water and 1.25 g HyBTC and mixed for 1 h. After 15 min of mixing, the mixture
was placed into a Teflon autoclave and heated at 423.15 K for 12 h. The resultant light
orange powders were isolated from the autoclave and dispersed in ethanol at 353.15 K for
3 h for R BTC residue removal. Eventually, the as-synthesized composite was isolated and
dried at 333.15 K overnight. The resulting composite was defined as M3T7, M3 Ty 4, and
M3 T 4, respectively.

As the control material, the pristine MIL-100 (Fe) was also fabricated through hydrother-
mal synthesis as reported elsewhere, with slight modifications (He et al., 2019). Initially,
Fe(NGs)3.9H,0 and H3BTC were dissolved in deionized water with additional HNO3 in the
mixture with an overall mole ratio of (Fe(NO; )3 -9H> O: H3BTC:HNO5:H,O = 3.57:2.4:9.02:200).
Subsequently, the mixture was magnetically stirred for 1 h, and placed on a Teflon-lined
stainless-steel autoclave for ispthermal heating at 423.15 K for 12 h. Afterward, the autoclave
was naturally cooled to room temperature. Then, the light orange powder was collected
through two-step purifications by water and ethanol at 333.15 K for 3 h to remove unreacted
reactants. Eventually, the prodyEH pristine MIL-100(Fe) was dried ovemight at 373.15 K. The
synthesis steps are graphically presented in Figure 1.

-
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Figure 1. Synthesis Steps ﬁll_-ll}o{ﬁ:) (left) and MxTy Composites (right).

2.3. Characlerization

The sample phg)urity was analyzed through XRD by a Bruker D2 Phaser diffractome-
ter equipped with a € Ko radiation source (A = 0.15406 nm). XRD patterns were measured
in the 28 range of 10-80" with a scan rate of 0.05"/s. The morphological and topological
structure of the composite was produced by SEM (JEOL JSM-6500F field emission SEM) at an
accelerating voltage of 15.0 kV and a working distance of 9.7 mm. Before the SEM analysis,
all solid samples were coated with a thin layer of platinum. The Micromeritics ASAF 2020
analyzer measured N> sorption isotherms at 77 K, and the surface area and pore diameter dis-
tribution were calculated using Brunauer-Hnett-Teller (BET) and Barrett-Joyner-Halenda
(BJH) models. Before the measurements, the samples were initially degassed for 12 h at
200 °C in a vacEh atmosphere. The 209 F3Tarsus measured thermogravimetric analysis
(TGA) under air ata heating rate of 10 °C/mirf§h to 600 °C. X-ray photoelectron sfiitroscopy
(XPS) was utilized for chemical state elements of MIL-100 (Fe)@TiO, analysis with a VG ESCA
Sdientific Theta Probe SpectrometefEfflith Al K, (1436.6 eV) source and 15-400 mm X-ray spot
size, operated at 3 KV and 1 mA. The UV diffuse reflectance spectra (DRS) were recorded
using a Jasco V570 UV-visible-near IR spectrophotometer with bariurfulfate (BaSO,) as the
reflectance standard throughout the 200800 nm wavelength range. Energy-disperse X-ray
spectrometry@EDS) equipped with TEM was used to p@Ebrm element mapping and atomic
composition analysisEEJer the regions of interest. On Bio-Logic Science Instruments with
EC-Lab® software, a three-electrode cell with a working electrode, a 't counter electrode,
and a standard Ag/AgCl reference electrode were used to analyze transient photocurrent
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density. A solution containing (.5 mol/L Na,50; servediZ} the electrolyte. Meanwhile, elec-
trochemical impedance spectra (EIS) were also measured using Bio-Logic Science Instfhents
with EC-Lab® software. Photoluminescence (PL) spectrum was procured through a Jasco
V-670 UV-visible-near IR spectrophotometer (Tokyo, Japan).

2.4. Adsorption and Degradation Photocatalytic Experiments

The current study examined the adsorption/photocatalytic degradation ability of
FEL-100 (Fe)@TiO, and MIL-100 (Fe) through RhB removability from an aqueous system.
The adsorption experiment was carried out in the absence of LED light (50 W; 300-800 nm),
whereas photocatalytic degradation was conducted in the presence of an D lamp. The
initial and equilibrium of RB concentrations were analyzed by monitoring the adsorption
intensity at A = 553 nm usinga UV-visible spectrophotometer (UV-2550, Shimadzu). The ad-
sorption and photocatalytic degradation studies were performed under several conditions
to investigate their important effects during the adsorption /photocatalytic degradation
process. Those effects /parameters are as follows:

s  Adsorption kinetic study: A series of RhB solutions with an initial c@#fentration of
100 ppm and a volume of 50 mL were prepared. After that, 50 mg of adsorbent was
adde@ cach prepared solution. The adsorption was carried out under neutral pH
and a shaking water bath at room temperature. The final concentration of RhB was
measured at ime intervals of 5 min.

e  Adsorption isotherm study: A series of RhB solutions with various initial concentra-
15 0f 10 to 600 ppm and volumes of 50 mL were prepared. Subsequently, 50 mg of
adsorbent was added to each prepared solution. The adsorption was conducted in a
shaking water bath at neutral pH and room temperature. The final concentration of
RhEB was measured after the equilibrium condition was achieved.

e Effectof adsorbent ma:mhe same procedure as in the kinetic and isotherm studies
was employed to study the influence of adsorbent mass on the adsorption of RhB. The
varimmdsmbenf mass of 10 to 50 mg was used in this case.

e  Effect of MIL-100{Fe) and TiO; ratic: In this case, the adsorption procedure was similar
to that described above. MIL-100(Fe) with various TiO; ratios (3:0.7, 3:1.4, and 3:2.4)
were used as the adsorbents.

e Effect of Fenton Addition: A 5i£rliIa:j{ertiml procedure was employed, and before
the adsorption took place, 1, 2, or 3 mL of H, O, was added to the mixture.

e Reusability test: Post-adsorption—photocatalytic process, £0.5 g samples were im-
mersed in 96% ethanol overnight, followed by washing three times until the solu-
tions turned clear. The regenerated samples were used as the adsorbents in the next
adsorpﬁmn—phofmﬂalyﬁc cycle.

m The data acquired from the adsorption and photocatalytic degradation experiments

were used to investigate the performance of MIL-100(Fe)@TiO; towards removal. The

specific amount of RhB adsorbed and degraded at equilibrium condition was calculated by

Equation (1) as follows:

4] (1) (Co—C)

— " xV (1)

m

where g, is the number of adsorbed RhB at equilibrium (mg/g), CgEhd Ce are the initial and

equilibrium concentration (mg/L) of RhB in the aqueous phase, respectively. I/ is the RhB

solution volume (L), and m is the adsorbent dosage (g). The adsorption and degradation
efficiency of RhB was measured through the following equation:

cy G
7= (1 = —) = 100% (2)
Go

where C; and C represent the initial and equilibrium RhB concentration at a specific t{fF}
and temperature. For this experiment, all kinetics and isotherms models or equations are
listed in Tables 1 and 2.

€
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Table ﬁ‘umm 1y of non-linear kinetic models.
32

Kinetic Model

Non-Linear Equations

Parameters

Pseudo First p
Order (PFO) Q= Q(l —eht)

Q¢ (mg/g): adsorption capacity at
various time, ¢
Qp o (mg/ g): calculated equilibrium
capacity of adsorption
k1 (1/min): the rate constant of the PFO
kinetic model

Pseudo Second
Order (PSO)

Q _ ool k2t
t = QT ket

Q. et (mg/g): calculated equilibrium
adsorption capacity
ks (g/mg-min): the rate constant of PSO
kinetic model
h (mg/g-min)= Qﬁl;m; k2 the initial
adsorption rate

Elovich Qi = w

« (mg/g-min): the initial adsorption
ratef (g/mg): a parameter related to the
activation energy for chemisorption and

the extent of surface coverage

Intra-Particle Diffusion

(IPD) O = kipp 5+C

kipp (mg/g-mino-s): IPD constant rate
C (mg/g) aconstant that provides value
regarding the thickness of the
boundary layer.

First Order (FO) Kinetics C = Cpexp| —ku,t)

C; (mg/L): final
photocatalytic concentration
Co (mg/L}): initial
pl'aocatalytic concentration
k1, (1/min): the rate constant of
FO kinetic model
t (min): time of

tocatalytic degradation

ko, (L/mg.min): the rate constant of SO
kinetic model
t (min): time
of photocatalytic degradation

Second Order c kot
(SO) Kinetics I-5 = =kt
Behnajadi, Modirshahla, )
and Ghanbary 1-& =1
(BMC) Models

m (min): reciprocal of initial removal rate
b (dimensionless): reciprocal theoretical
maximum oxidation capacity

Table ﬁ‘umma 1y of non-linear isptherm models.
32

Technical Constant

Qo (mg/g): calculated maximum
adsorption capacity
K; (L/mg): Langmuir
isotherm constant
Ry =[1/(1+ K Co)l; Ry (dimensionless):
separation factor

Isotherm Model Non-Linear Equations
Langmuit Q, — Do, cal I{Q.{Cf
Freundlich

0. = ] C,,lf"'"

Kr (mg/g)(L/g)": Freundlich isotherm
constant related to the
adsorption capacity
n (1< n < 10): Degree
adsorption favorability
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Table 2. Cont.

Isotherm Model Non-Linear Equations "B:hnical Constant

Kgp (L/g): Redlich-Peterson
isotherm constant
Redlich-Peterson Q. = K C. arp (L/mg): Redlich-Peterson
(R-P) €7 ltane G, ¥ isotherm constant
g (0 < g < 1): Redlich-Peterson isotherm
binding constant
K¢ (I_a]: Sips isotherm model constant
Sips (= ek, CM Gns (Mg /g): Sipslisoﬂ'lcrm‘maximum
LA BTN adsorption capacity
#s: Sips is model exponent

Qo (mg."g} maximum
) adsorption capacity
Toth Q. = L_IL]‘T Ky (mg/L}): Toth isotherm constant
(K 4G me 0 t17p: Toth isotherm model exponent;

O<np =1

by (1 /mol): Temkin isotherm
binding constant
Temkin Q- = —f'[lh: KrCe Ky (L/g): Temkin isotherm equilibrium
binding constant
R (8.314 ] /mol.K): the ideal gas constant

3. Results and Discussion
3.1. Characterization

The crystalffifly and phase purity of the obtained M, T, and TiO; (anatase) were
measured using X-ray diffraction (XRD) (Figure 2). According to the XRD diffractograms,
each synthesized M,Ty resembled pristine MIL-100(Fe) peaks at 28 angles of 117 and
207, excluding M3 T, 7. This resemblance also corresponded to the theoretical MIL-100(Fe)
single-crystal XRD pattern based on CCDC 640,536 [12]. Other than MIL-100(Fe) peaks, the
obtained M« Ty also exhibited some key TiO; anatase peaks at 28 angles of 28°, 36°, 56°, and
70°. These peaks corresponded to the (101}, (211), and (204) arystal planes of TiO, (anatase)
and fit the TiO; (anatase) simulated card (IC5D-5(1447) [13]. However, there was a slight
shift within the observed peaks on the composite, compared with its pristine component.
This can result from the increasing or decreasing band gaps, which is possible when two
materials are combined. We can still safely assume that the peak shown on the composite
was the peak of the pristine component because the shifting was consistent within each
peak. With these two indicators present in the obtained M,T,, the XRD pattern provided
sufficient evidence of TiO; characteristic peaks in the M, T, c;:_vstallirle.

Furthermore, the SEM images were implemented further to clanify the structures and
morphologies of the synthesized M, Ty. As shown in Figure 3, the synthesized M, Ty had
an irregular triangle shape with a size in the range of nanoporous materials. According
to SEM images, the syrmized particles tended to agglomerate and create an aggregate
of materiff affecting the adsorption and photocatalytic degradation performance. In
addition, energy-dispersive X-ray spectroscopy (EDXS) was also emplayed to confirm the
existence and distribution of each precursor inside the synthesized My Ty. The distribution
of precursors inside the synthesized MxTy showed a match between the expected and
actual metal ratios to TiO» (Figure 4).
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‘— TiO, (Anatase)
I

1]

A
] L

——— MIL-100(Fe)|

Intensity (a.u.)

ﬂm‘e 2. XRD patterns ufélri.stinc Ti(s, MIL-100(Fe), and My Ty composites.

To turther clarify the presence of each pristine MIL-100(Fe) and TiO; anatase inside
the composite, the thermogravimetric analysis (TGA) was conducted, and is shown in
Figure 5A. A weight loss around 200 °C was assigned to the removal of water molecules
plus the desorption of ligand from the surfaces of the nanocrystals [10]. The decomposition
of carboxylic acid was observed between 245450 °C, which corresponded to the composite
framew ork’s collapse. When heated further, well over 450 "C, the TiO; anatase exhibited
great thermal stability. In the MyT; 4 curve, we can see that the graph is more stable at high
temperatures than pristine MIL-100(Fe), which indicates that the stability must come from
the TiO» anatase presence within the M3 T 4. To study the pore structure of the synthesized
materials, nitrogen sorption analysis was conducted, and is shown in Figure 5B. From the
N3 sorption result shown in Figure 5B, the Ti0; anatase exhibited type Il isotherm, and the
composite isotherm exhibited type 1 and IV isotherm. The surface pore area was calculated,
and is shown in Table 3. According to those results, the optimum ratio for MIL-100(Fe) and
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Ti0; to create the most significant surface area, which will benefit the application towards
adsorption and photocatalytic degradation, was M3Ty 4.

000 Viinm

4 m Electron [mage 1

'
NTUST

Figure 3. 5SEM images of (A) TiO; anatase; (B) MyTy7; (C) M3Ty4; (D) M3To 4.

1 3
E\_.,l;:cae 569 cts Curse: 0.000

1 Z 3
il Scale 589 s Cursor: 0.000

Figure 4. EDXS pattern of: (A) TiQ; anatase; (B) M3Ty7; (C) MaTy4; (D) M3 Ts 4.
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Figure 5. (A) TGA Curve and; (B) N sorption isotherm.

Table 3. BET surface area results.

Relative Pressure (P/P,)

Materials BET Surface (m?/g)
MIL-100(Fe) 1576.4
MjsTo7 179.2
MT; s 450.7
M3Tsy 799.5
TiC: anatase 79.3

The photoluminescence spectra (PL) for each MKTY were investigated from 300 nm
to 800 nm (Figure 6). Guo et al. [14] reported that the lower the PL intensity obtained, the
more efficient the transfer of the photoinduced carriers and their generation inside the

whole system. Distinctly, M3T1 4 showed the lowest PL curve, with M3T74 showing the
highest L curve. This phenomenon shows that M3 T, ; provided significantly enhanced
separation efficiency and reduced recombination rate of the excited electron-hole pairs, the
most suitable/profitable to use in the photocatalytic degradation system.

Intensity (a.u)

~ —MT,,|
—MT,;
M;Ty,|

T
300

T T T T
400 500 600 700
Wavelength (nanometers)

Figure 6. PL specira of My Ty composites.

T
8OO
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The stability of the synthesized M, T, under visible light irradiation was studied
using the transient photocurrent tests. The experiments were recorded under visible
light irradiation, which was switched on and off regularly. As shown in Figure 7, the
photoexcited electrons that produced the photocurrent were observed when the light was
turned on. The photo-generated carriers' better separation efficiencies and a longer lifetime
is indicated by higher photocurrent density [14]. M3T 4 exhibited higher photocurrent
density than other ratios, indicating that M4T 4 can provide good separation efficiencies
and a longer photo-generated carrier’s lifetime than other synthesized ratios.

1.0

0.6

pho@current (mA)
o
5

AN

0.0

, . T h T T
0 50 100 150 200
time (s)
Figure 7. Transient photocurrent density spectra of M. Ty composites.

1600 4 [ —m—m,T,,|
® MT,, L - O .
14004 | —&-m,T *
3124 R = -
o, A
1200 A, [ ]
oA A 3

g 1000 oA x
5 o NS
= 800 & - s
8 A Ao,

600 ~
E 5 A o

400 2 %

4 A @
200 z ‘
04
—200 T T T T T T T T T T T T Y
0 500 1000 1500 2000 2500 3000 3500
Re (Z)/ ohm

Figure 8. EIS spectta of M T, composites.
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13

%e impedance of the photbanodes was used to examine the charge transport caffEgility,
and electron impedance spectra (EIS) tests were conducted. A smaller arc diameter at high
frequency implies high efficient charge separation and electron transfer [14]. As shown in
Figure 8, M3T; 4 also exhibited a smaller arc diameter than other M, T, indicating efficient
charge separation and electron transfer capability of the material compared with other M, T,.
The EIS results were consistent with the PL and tmnblelm‘mtucurrent tests, indicating, the
highest photocatalytic capability efficiency of the MyT, 4 under visible light irradiation.

The chemical bonding of MIL-100(Fe) and TiO; atoms was{Bharacterized using XPS
(Figure 9). The full survey spectrum of XPS distinctly disclosed the existence of Fe, O, Ti,
and C elements. The high-resolffffbn spectra of Ols, Ti2p, and Felp are also shown in
Figure 8. In the spectrum of Ols, peaks at 528.6, 530.3, and 531.7 eV were assigned to C=0
bonding (carboxyl group in benzene tricarboxylic acid), O-Fe bond (ligand bonding with
the metal), and Ti-O-Ti bond (fr(EJTiO; molecules) [10]. Peaks at 458 @@ind 466.3 eV in the
spectrum of Tilp corresponded to Ti 2p; s, and Ti 2p; »» respectively. The binding energy
difference of 7.7 eV between Ti 2p;,» and Ti 2p; ;» showed the chemical state n@“ in
MIL-100{Fe)@TiO, materials [15]. In the Fe2p spectrum, two peaks were observed at 712.9
Ehd 727.3 eV, which were assigned to Fe BB}, and Fe 2p; s, Therefore, the chemical state of
Fe(1ll) was present in MIL-100(Fe) [16]. Peaks at 284.6 eV and 288.9 eV in the spectrum of
Cls corresponded to the benzene ring (from the benzen@ficarboxylic acid) and a carboxyl
group. XPS amalysis provided sufficient evidence for the chemical interaction between
MIL-100{Fe)@TiO> molecules.

The optical absorption capability of synthesized M, T, was investigated using UV-Vis
DRS. As seen in Figure 10, M3T 4 exhibited a higher and broader spectrum than other
MyTy, indicating that M3T1_r| be considered an optimum metal-to-TiO; ratio fﬂ
ability to absorb lightwaves. The optical band gap of each M, T, was calculated using the
Kubelka-Munk function versus the energy of absorbed light [17]. Figure 10 shows that the
optical band gap of M;T; {88fhs around 3.26 eV, MaT( 7 was around 3.67 eV, and M3T2 4 was
around 4.16 eV. Figure 11 shows the Tauc plot obtained from UV-Vis DRS spectra of each
precursor, as well each synthesized ratio.
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Figure 10, UV-Vis DRS spectra of My Ty composites.
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The photocatalytic capability of composite materials was also compared with its precur-
sors, The individual band gap of MaT 4, whichis gained from UV-Vis DRS, combined with
the geometric mean of Mulliken electronegativity values of its constituent atoms, was used to
calculate the conduction and valence band of materials using this empirical formula [13]:

Eyp = X — E, +0.5E, 3)
Ecp = Evp — Eg 4

where variable “X" represents the Mulliken electronegativity of an element (5.81 eV for
h, 6.74 eV for MIL-100(Fe), and 6.69 eV for MIL-100(Fe)@TiO,), L, is the energy of free

electrons on the hydrogen scale with a value constant of 4.5-eV vs. NHE [15], and E;
24
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represents the sample’s bandgap energy measured using UV-Vis DRS. Table 4 summarizes
the values for ES’ Ecp, X, and Eyp of the composites and their precursors.

Table 4. Summary of electronegativity, X, band gap energy E, (ineV), energy positions of band edges
Eep and Fyp (in eV) of composite and its precursors.

Materials X (eV) Eg (eV) Ecg (eV) Eyg (eV)
MIL-100{Fe) 674 535 —0.43 491
TiO» anatase 581 332 —(.35 297
MIL-100(Fe)@TiO5s (MsTy ) 669 326 061 387

3.2. Adsorption Kinetics and Isotherm

Rhodamine B’s (RhB) adsorption kinetics l} MKT_\, were correlated using pseudo-
first, pseudo-second, and Elovich models, while the Langmuir, Freundlich, Temkin, Sips,
Toth, and Redlich-Peterson adsorption equations were used to represent the experimental
adsorption data. The fitted pseudo-first kinetic models for M3Tjy7, M3T; 4, and M3T,
are shown in Figure 12A, while the fitted pseudo-second and Elovich models for M3Ty 4
are shown in Figure 12B. Based on the non-linear kinetic correlation shown in Table 5,
pseudo-first-order kinetics represented the experimental data better than other kinetics
equations. Figure m shows that the system reached equilibrium in approximately 60 min.
Figure 12C shows the intra-particle diffusion model for studying the diffusion medhism
and its rate towards the RhB adsorption process. The non-linear curve between g, and #3
Bidicates that the adsorption occurred in multiple steps. The first stage involved the fast
transfer from the solution to the surface of My Ty, which utilized previous isotherm models,
driven by the electrostatic interactions (physical sorption) between the organic dyes and
water molecules. The next step was a slower diffusion from the surfacf:o the pore of the
MxTy nancpartcles, which corresponded to the final equilibrium state of the adsorbate and
adsorbent. The experimental adsorption isotherm data and fitting for Langmuir models
towards pristine MIL-100(Fe), M3Ty7, M3T; 4, and M;3T; 4 are shown in Figure 13A, while
the other fitted isotherm models for M3T; _.nre shown in Figure 13B. Based on the non-
linear isotherm correlation shown in Table 6, the Langmuir model isotherm represented the
experimental dbetfer than other isotherm equations, indicated by a higher correlation
coefficient {J’{2 )- It can also be seen thal M3T 4 indicated the highest equilibrium adsorption
capacity (g.), compared with other composites.

According to Giles et al. [19], the classification of the isotherm plots in all experiments
represents the L-curve (normal or Langmuir isotherm) with subclass 2. The L-curve
frequently demonstrated the behavior of solute adsorption in an aqueous solution onto an
adsorbent. In most Langmuir isotherm cases, the solute adsorption continuously increased
along with the solute concentration and adsorption sifem:ﬂability, until the active sites
reached their saturation capacity. This statement infers that the availability of the active
site plays a significant role in determining the adsorbent’s adsorption capacity. Therefore,
it was rational for MIL-100 (Fe)@TiO; with the optimum mole ratio of 3:1.4 to have high
adsorption capacity since it provided better adsorption accessibility of solute towards
active sites (Table 3). In addition, the refinement of adsorption sites available through the
structural porosity adjustment led to a rise in the affinity constant or Langmuir constant
(Kp). This suggests thata strong affinity occurred between adsorbate and adsorbent [20].
Meanwhile, the plateau plots with subclass 2 were observed after a specific adsorption
time. This phenomenon was caused by the adsorbent’s monolayer saturation, resulting
in the solute affinity towards the adsorption sites being lower than the solvent. In this
case, increasing adsorplion temperature negatively influenced the attachment of solute
towards new sites after reaching its first saturation capacity. The increasing temperature
decreased the adsorption capacity of My Ty (Figure 13C). As the temperature rose, the
nature of the solute dye molecules’ solubility increased, which further assisted the mobility
and diffusion of RhB leaving the adsorption sites. This theory was consistent with the
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adsorption data of RhB onto MIL-100 (Fe)@Ti0O,, where the maximum saturation capadty
(quax) decreased along with the increase in temperature (Table 7), which indicated the
adsorption was exothermic. t
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Figure 12. Adsorption kinetics models (A} each component towards PFO equation; (B} M3T) 4
towards other kinetic models; (C) intra-particle diffusion models.

3.3. Thermodynamic Study

The thermod ynamic system fundamentally evaluated the adsorption system to de-
termine physisorption or chemisorption. Physisorption (known as physical adsorption) is
controlled by relatively weak coordination through van der Waals forces, while chemisorp-
tion (or chemical adsorption) takes advantage of the sharing electron’s ability of adsorbent

adsorbate to construct strong chemical bonding. Judging by the value of several

rmodynamic parameters, such as the Gibbs energy change (AG") and the enthalpy
change (AH"), both physical and chemical adsorption can be evaluated. The thermody-
namic parameters also determined the system behavior during the adsorption. For instance,
the spontaneity of the system was determined based on the value of AG" (the adsorption
process will notbe favorable and non—sp(mtane{m“fhen the AG” exhibits a positive quantity,
while it will be feasible and spontaneous with the negative value of AG”). Meanwhile, the
value of AH" reflects whether the system is exothermic (AH® < 0) or endothermic (AH" > 0).
The chemical adsorption was dominantly presented by the system with endothermic nature,
which required a certain amount of energy from tfZurroundings to construct inferaction. By
contrast, the exothermicity system was indicated by the decrease in adsorption capacity with
the increasing temperature; the system releases heat energy toward the surroundings. The AS®
value also draws a significant aspect in determining the adsorbate distribution pattern at the
solid /solution interface, whether it is less than zero (AS® < 0) or more randomly distributed
(AS® = 0). In addition, the positive and negative values of AS® also correspond to adsorphon’s
dissociative and associative mechanism.
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Table 5. Farameters of kinetic models.

Parameters *

Adsorbents Model
) o k1 Qe,cal
MIL-100{Fe) 09967 0.0769 583991
M3Ty7 0.9934 0.1297 231596
M3Ty 4 ¥ 09992 0.0717 566876
MaTay 0.9971 0.0775 181273
R? kiep &
i org e s =
VT 0.9712 4.9588 D..]SES
09552 1.3585 14.746
R
MLTs, u.%ﬂ.} B.5686 12118
045404 3.6735 21.778
r2 by w107 i
MIL-10({Fe) 05945 11.0122 730601
MaToz PSO 0.983% 73.2139 267105
M3Tq4 0.9952 8.5068 543482
MzTay 0.9942 13.3000 501353
R? i B
MIL-100(Fe) 09837 8.8664 0.0543
M;Ty7 Elovich 0.9599 13.1702 0.2003
MaTiy 09843 8.9117 0.0457
MaTzy 0.9828 7.4064 0.0662

* Caleulated based on non-linear fiting on Origin Pro 2021 Software (Northampton, MA, USA).
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Figure 13. Adsorption isotherm models: (A) each component towards the Langmuir model;
(B) M3Ty 4 towards other isotherm models; (C) at different temperatures.
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Table 6. Parameters of isotherm equations.
Adsorbents Model Parameters *
R Ki Qurax (cald
MIL-100(Fe) 0.9977 0.0344 58.9810
M, T, 4 0.9944 00354 93.0977
M;Ty 7 Langmuir 0.9975 0.0243 §3.1217
M,Ts 4 0.9977 0.0306 66.2711
R? Kr "
MIL-100(Fe) 0.9322 10.5269 3.5129
M,T, 4 Freundlich 0.9282 18.9381 3.8696
M;Ty7 0.9158 13.7269 3.5249
M;Ts 4 0.9118 12,6302 3.7898
R? Kgrp aRp g
MIL-100(Fe) 0.9968 2.0290 0.0349 0.9932
M;T, , R-P 0.9946 34787 0.0415 0.9827
MyTy 7 0.9975 20290 0.0349 0.9999
M;T, 4 0.9971 2.0155 0.0300 0.9939
R? Ks ns g
MIL-100(Fe) 0.9988 0.0410 58.9019 0.9755
M;T, 4 Sips 0.9947 0.0464 95.9308 0.9004
M;Ty 7 0.9999 0.0161 80.0316 1.1376
M;T, 4 0.9982 0.0392 63.8829 0.9181
R Q1o Ko iy
MIL-100(Fe) 0.9973 58.2251 29.0698 .9883
M;T 4 Toth 0.9950 96.1932 15.9191 0.8679
M, T, 7 0.9975 83.1153 11.2046 0.9921
M;yTs 4 0.9977 66.2678 32.6964 0.9993
Temkin R? br Kt
MIL-100(Fe) 0.9874 239.5997 0.5517
M;T; 4 0.9789 159.7044 0.6830
M;Ty 7 0.9758 161.7385 0.3309
M, Ty 4 0.9719 211.4439 0.4610

* Caleulated based on non-linear flitling on Origin Pro 2021 Software (Northamplon, Massachusetts, USA).

Table 7. Parameters of Langmuir equation at various temperatures.

T(K) R2 p (g/L) Quiax feale)
303.15 0.9944 996.584 93.0977
318.15 0.9874 991.003 86.1641
333.15 0.9837 985.917 80.7086

The conventional way to determine the thermodynamic parameters of adsorption is
based on the third principle of thermodynamic laws:

AG® = —RTIn (K,)

G
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The correlation between AG®, AH", and AS® can be written as follows:

AGCY = AHY — TAS" @ (6)
71

Substitution of Equation (5) into Equation (6) produces a well-known van ‘t Hoff

equation which is widely used to obtain the thermodynamics parameters of adsorption:
, AH"  AS*
In(K) =~ + % )

The calculation or determination of the thermodynamic equilibrium constant, K., is
stillunder debate [21]. Vari§} approaches have been proposed for that purpose; several
directly use the parameters obtained from the fitting of the experimental adsorption data
using adsorption isotherm equations as the equilibrium constant [22]. This approach
neglects the dimensionality of K, since the adsorption isotherm parameters usually have
their units. Various researchers also developed or used other thermodynamic approaches
that neglect the dimensionality of K, to calculate the adsorption thermodynamics [23].

Several issues that need to be considered in determining the valid K; and accurate
fherw:lynamic parameters are:

e  The thermodynamic equilibrium constant, K¢, should be dimensionless;
e The selection of adsorbate concentration is critical to determine which model could

LTt 20 B
®  The regression coefficient (R2) of the van 't Hoff equation must be high and linear, and

calculated based on temperature with kelvin units (K);

e  Thebehavior of isotherms, experimental data, and thermodynamic parameters should
be logical and consistent.

In recent studies, there have been two primary approaches to determining the thermo-
dynamic equilibrium constant: (1) the distribution or partition coefficient model; (2) the
isotherm adsorption model constant (the most common Langmuir constant). This study
employed the partition coefficient model as the starting point for model development.

The partition model, which observes the adsorption system as the apportionment of
adsorbate between solid and liquid phases, is an old-fashioned model for liquid-phase
adsorption. Biggar and Cheung [24] proposed this model to evaluate the thermodynamic
adsorption of picloram onto several soils. For this typical adsorption system, the chemical
equation has been described as follows:

A & Ay (8)
where Ay, is the adsorbate in the solid phase, while Ay, is the adsorbate in the liquid phase.
The equilibrium parameter of Equation (8) can be written as follows:

K;J_ [Am] _ Ca i

]
where[A,)] and [A)] are the activity of adsorbate in adsorbent and solution at equilibrium,
pectively. Meanwhile, s and . are the activity coefficient of adsorbate on the adsorbent
and in solutioff@iring equilibrium. C; (mg/L) and C, (mg/L) correspond to the adsorbate
concentration on the adsorbent and in solution at equilibrium. In specific conditions, the
value of the activity coefficient reached unity when nearly zero adsorbate concentration
was observed, and Equation (9) becomes:

&)

. Cs  a
I = a0
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In this model, the K;, valuegn be acquffll by plotting In (C/C,) (y-axis) vs. Cs (x-axis)
and extending the C, value to zero, and the intersection with the vertical axis produces the
value of Kp. The high value of the regression coefficient (R?) should be obtained to obtain
the valid value of Kp.

Khan £l Singh proposed the distribution coefficient (K;) based on the partition
model [25]. The distribution coefficient can be written as follows:

K&# = Qtl

G

C. (mg/g) is the amount of adsorbate in the solid at equilibrium condition, while the
symbol C, (mg /L) represents the equilibrium concentration. This method obtains the K; value
similarly to Equation (10). As the distribution coefficient, K; calculated from Equation (11)
has a unit of L/mg. Furthermore, in an adsorption system, each value of Q, corresponds to a
value of C.. At the high-medium to high value of C,, in most adsorption systems, the value of
Q; does not increase linearly, and it becomes constant when a saturated condition is achieved.
The inclusion ofEflsorption isotherm at medium and high equilibrium concentrations always
results in a low value of the regression coefficient (Rz),

To obtain the value of K; with a high R2, the value of Qe should be linearly increased
with C,, and this condition can be achieved when the adsorption isotherm is linear. The
linear part of the adsorption isotherm occurs when the equilibrium concentration is low or
very low. Now consider the Langmuir equation as follows:

1m

K.C.

——— 12
14K Ce a2

Q(‘ — Qramx
where Owar (mg/g) is Langmuir’s parameter representing the adsorbate’s adsorption
capacity, #ffBK, (L/mg)is the adsorption affinity. At very low equilibrium concentration
(C, << 1), the Langmuir equation can be written as:

QP = Qrmll‘-KI.-Ce“ (13)
Equation (13) gives a linear correlation between Q, and C,, and:

% = QrmuKL (14)

Substitution of Equation (14) to Equation (11) gives:
Kd = Qm.:x-KL (15)

Here the unit of K; obtained from Equation (15) is L/g. Several studies directly
used the value of Kj; as the equilibrium constant K, (dimensionless constant) to obtain
thermodynamic parameters of several adsorption systems. Since the unit L in Kj; is the unit
volume of solution, it can be easily converted into mass by multiplying with the density of
solution p (g/L)

Kg= erm.\'-KL-P (16)

The distribution coefficient calculated from Equation (16) is dimensionless. Equation (16),
for the first time, was proposed by Milonji¢ [26] by taking the density of water to 1000.

K,.‘ = Qr!relx-KL-]OOO (]7)

11
The thermodynamics properties of RhB adsorptionffifto the surface of MIL-100(Fe}@TiO»
are given in Table 5. At all rempel'aluexaminai, the Gibbs free energy (AG") for the
adsorption of RhB was negative with a value lower than —20 kJ /mol, which indicated the
spontaneous nature of RhB adsorption towards MIL-100(Fe)@TiO; and that phys:ismﬁ(m
controls the mechanism. Increasing temperature decreased the AG® value, implying that the
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affinity of RhB onto MIL-100 (Fe)@TiO, was diminished at higher temperatures. The negative
AH" value (—16.74 k] /mol) confirmed that a:n)rptitm was an exothermic process with the
value of AH" under —21.9 k]/mul, verifying that the physisorption mechanism was more
dominant than chemisorption.

Table 8. Thermodynamic parameters of the adsorption of RhB on MIL-100(Fe}@TiO;.

Thermodynamic Parameters

Temperature (K)

In Ky AG® AH® AS¢ R2
303.15 8.0958 —20.4046
318.15 7.8238 20,6947 167413 121974 0.9935
333.15 74964 —20.7636

3.4. Emr of Variables en Photocatalytic Dye Adsorption—Degradation
3.4.1. Effect of Adsorbent Mass towards Adsorption

The effect of the adsorbent loading on the adsorption capacity was investigated in
this study. As shown in Figure 14, the adsorption capacity towards RhB after 60 min
increased when the adsorbent dose increased from 10 to 50 mg. This resultindicated that

more surface area and active sites were available with increasing adsorbent dosage in the
adsorption system.

70

qe (mg adsorbate / g adsorbent)
- = ] 3 3
1 1 Il 1 'l
-

==
=l
1

10 20 an 40 50
Adsorbent Mass (mg)

Fiﬁge 14. Effect of adsorbent mass towards RhB adsorption.

3824, Effect of Adsormlt Ratio towards Photocatalytic Degradation

Different ratios of the MIL-100(Fe) and TiO; in the composite could impact the ma-
terial’s porosity, thus, impacting its transfer efficiency and accessibility of the active sites
tor photocatalytic degradation. This occurrence was studied by varying the mole ratio
of TiO, (0.7; 1.4; and 2.4} incorporated into the constant amount of MIL-100(Fe) (denoted
as M3Ty 7; M3T) 4; and M3T54). The suitable amount of TiO; inside the composite could
enhance the photoreactivity of the composite by increasing the specific surface area and
promoting charge transfer [13]. The results of this study are shown in Figure 15. As shown
in the figure, M3T 4 exhibited the best performance on the overall degradation of RhB
in the aqueous system. The results also indicated that high TiO; content leads to catalyst
aggregation, which lowers active sites, and reduces light penetration, and scattering [13].
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Figure 15. Effect of TiO» ratio towards RhB adsomption and photocatalytic degradation.

3.4.3. Effect of Fenton Addition

Adding Fenton reagent (H,05) to the process can enhance the number of «OH species
while lowering the radiation intensity, energy consumption, and cost-effectiveness. This
phenomenon was studied by adding various amounts of Fenton (1 mL, 2 mL, and 3 mL) into
the system containing 100 ppm of RhB and 50 mg of M3T, 4 adsorbent. The photocatalytic
degradation process in this research was performed by radiating the solution with the visible
LED light atter adsorption. The rate constant of the degradation process was determined by
non-linear fitting of the experimental data, as shown in Figure 16. Based on the non-linear
fitting in Table &, first-order kinetics suited the experimental data better than the second-order
and BMG model kinetics. From the synthesized materials, M3T) 4 exhibited the highest rate
constant (k; P J, compared with the others. Based on the result shown in Figure 17, adding a
small amount of Fenton improved the photodegradation ability, as shown in Figure 17 and
Table 9. As previously mentioned, there are three possible ways in which Fenton could create
a sufficient amount of °OH radicals: (i) it obtains electrons from °0O5 radicals to make the
"OH radicals; (i) it reduces H>O; at the band conduction to produce “OH radicals, which
prevent photo-generated electrons and holes from recombination; or (iii) "OH radicals are
produced when visible light irradiation causes self-degradation. As a result of these actions,
the oxidation rate is accelerated, and the removal efficiency isincreased [27].

3.44. Reusability Test

The reusability potential of the composite was investigated in this study for five cycles
of adsorption—photodegradation of RhB. The experiments were conducted as follows: after
adsoon—phomdegradaﬁ(m, the adsorbent was soaked in ethanol (24 h), and centrifuged,
then dried at §JC for 6 h. Subsequently, the adsorbent was used in the next cycle. Based
on the results shown in Figure 18, the removal percentage of the RhB slightly decreased
after five cycles, indicating the stability of composite as the adsorbent.
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Table 9. Fhotocatalytic degradation kinetic reaction.

Catalystand LED Irradiation without Fenton Catalystand LEE o distitin

Kinetic Reaclion Model Technical Constant * with Fenton on M; Ty 4
MsToy;  MsTys  MsTzq  MIL-100(Fel 1mL 2mL 3mL
First-order kinetics kiy % 10° (min=1) 0.5834 1.5700 0.9479 0.2793 16.32 17.68 2084
Cr = Co P {—k1t) k2 0.9847 0.9944 0.9829 0.9462 0.9914 09954 0.9925
Second-orderkinetics k2 x 103(Lomg=—lmin-1) 07483 2.2100 13100 0.3305 3243 36.17 4556
1-¢ =y R2 0.9830 0.9666 0.9629 0.9039 0.9842 09795 0.959
m (min) 13534 568115  783.069 1819.64 39.26 B.02 35,69
1 é?ifﬁ b 0.9767 0.7399 0.9663 2.4655 0.889%6 0.8615 0.8088
R? 09809 0.9829 09832 0.9249 0.9811 0.9891 0.9885

* Caleulated based on non-linear fiting on Origin Pro 2021 Software [Northampton, MA, USA).

100 A

%Removal
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Figure 18. Stability and reusability of M3 Ty 4.

3.5. Plausible Mechanism of Photocatalytic Degradation of RhB on M. T,

During photocatalytic degradation, many active species are involved in the process,
such as photoinduced hydroxyl radicals (OH"), superoxide anion radicals (O3 ), and
electron holes (h7). Free radical scavenging experiments were conducted to confirm the
existence of these active species inside the system. lsopropanol (IP), benzoquinone (BQ),
ammonium oxalate (AO), and sodium azide (SA) were prepared with a concentration
of 0.001 M as scavengers for OH*, O, h", and O, respectively. RhB degradation was
decreased and hindered with the presence of BQ and IP (Figure 19A). RhB only slightly
degraded with the addition of AO and SA. The arrangement of total degradation was
determined based on the influence of each free radical scavenger: BQ > IP > AO > SA > no
scavenger. Briefly, this experiment concluded that the crucial O;_ active species played a
crucial role in the mechanism of RhB degradation.

From the UV-Vis DRS characterization in Table 3, a high band gap value of MIL-100(Fe)
(5.35 eV) may restrict the excitation of the electron processes, which decredgZB its capability
in photocatalytic degradation. However, the M;T) 4 composite exhibited the lowest band
EJ energy value (3.26 eV) compared with the other ratios, including its precursor (pristine
MIL-100(Fe) and TiO» anatase). These results showed that the M3 T, 4 composite successfully
improved the photocatalytic degradation capability, corresponding to its lower band gap
value. Therefore, a plausible mechanism of photocatalytic degradation has been shown (in
Figure 19B), with the further explanation as follows: (1) visible light irradiation gives sfifif@ient
energy for the electrons (¢7) from M[l_—'lﬂﬂ’s conduction band to jump /migrate into the
TiO,’s conduction band; (2) the excitation of the electrons creates holes () on the TiO2's
valence band, which then migrate into the MIL-100(Fe)’s valence band; (3) this repeating
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process allows photo-excited electrons (e~ ) and holes (1) to contact with oxygen and water
molecules, respectively; (4) after contact with photo-exdited electrons and holes, oxygen
molecules create O3~ while water molecules create OH* [5]; (5) these free radicals will then
degrade the organic pollutant and turn it into mineralization products, such as carbon dioxide
and water.

LED Lamp

Y%aRemoval

ﬂlulm:lhﬂyllc.
RhB + OH’ + O, ——} Degradation Product
Mineralization
Figure 19, (A) Free radicals scavenging experiment on overall degradation; (B) plausible mechanism
of photocatalytic degradation of RhB towards My Ty.

4. Conclusions

In summary, an effective and efficient photocatalyst composile was successfully syn-
thesized via a simple hydrothermal method from MIL-100(Fe) and a Ti0, anatase precursor.
Characterization of the synthesized M, T, proved to be quite successful and provided
enough evidence to conclude that the materials will have high photocatalytic performances.
This was confirmed with the aforementioned adsorption—photocatalytic degradation exper-
iment results, in which the optimal composite (M3T} 4) degraded the organic RhB pollutant
to 99%. The addition of Fenton was also proven to be successful in increasing the photocat-
alytic abilities of the synthesized materials. The synthesized materials were also found to
have good reusability.
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