Advances in Tinnitus Research: Assessment, Treatment, and Neuroscience Basis

TABLE OF CONTENTS

Introduction and Learning Outcomes i
Author Disclosures ii
Prologue iv

Dorsal Cochlear Nucleus Hyperactivity and Tinnitus: Are They Related?
by James A. Kaltenbach and Donald A. Godfrey CE-1

Mechanisms of Synaptic Plasticity in the Dorsal Cochlear Nucleus:
Plasticity-Induced Changes That Could Underlie Tinnitus
by Thanos Tzounopoulos CE-15

Role of Auditory Cortex in Noise- and Drug-Induced Tinnitus
by Jos J. Eggermont CE-21

Cross-Modal Interactions of Auditory and Somatic Inputs in the
Brainstem and Midbrain and Their Imbalance in Tinnitus and Deafness
by S. Dehmel, Y. L. Cui, and S. E. Shore CE-29

Gap Detection Methods for Assessing Salicylate-Induced Tinnitus and
Hyperacusis in Rats
by Jeremy G. Turner and Jennifer Parrish CE-46

Identifying Tinnitus Subgroups With Cluster Analysis
by Richard Tyler, Claudia Coelho, Pan Tao, Haihong Ji,
William Noble, Anne Gehringer, and Stephanie Gogel CE-54

Renewal Notes: Additional References CE-63

EVIDENCE-BASED PRACTICE

It is the position of the American Speech-Language-Hearing Association that audiologists and speech-language pathologists incorporate the principles of evidence-based practice in clinical decision making to provide high quality clinical care. The term evidence-based practice refers to an approach in which current, high-quality research evidence is integrated with practitioner expertise and client preferences and values into the process of making clinical decisions.

Participants are encouraged to actively seek and critically evaluate the evidence basis for clinical procedures presented in this and other educational programs.

Adopted by the Scientific and Professional Education Board, April 2006

ASHA Self-Study 8256
INTRODUCTION

Gain unique insight into the fundamental mechanisms and properties of tinnitus, including its identification, generation, maintenance, interaction with other sensory systems, and possible treatments. Six articles based on research presented at the June 2007 “Advances in Tinnitus Assessment, Treatment, and Neuroscience Basis” conference focus on the enduring science—which is still useful and relevant today—behind tinnitus research. The articles show how convergence of the basic sciences and clinical domains—including audiology, psychology, neurophysiology, biophysics, medicine, anatomy, and molecular biology—can contribute to advancing this area.

LEARNING OUTCOMES
You will be able to:

- discuss a model that suggests the dorsal cochlear nucleus plays a pivotal role in the emergence of tinnitus
- explain how cortical representation of tinnitus is manifested by increased synchrony between sets of neurons
- explain how synaptic plasticity can serve as a mechanism for tinnitus generation
- identify subgroups of tinnitus patients most likely to benefit from different treatments
- discuss the use of a gap detection startle-reflex procedure as a way to demonstrate behavioral evidence of tinnitus
- list anatomical and neurobiological evidence of auditory/somatosensory system interactions in tinnitus

PROGRAM HISTORY

Original start date: August 29, 2009
Peer reviewed: March 18, 2011
Peer reviewed: November 28, 2013
Available through: November 28, 2016

IMPORTANT INFORMATION

To earn continuing education credit, you must complete the test with a passing score on or before November 28, 2016.

To see if this program has been renewed after this date, please search by title in ASHA’s online store at www.asha.org/shop.

ASHA Professional Development is approved by the Continuing Education Board of the American Speech-Language-Hearing Association (ASHA) to provide continuing education activities in speech-language pathology and audiology. See course information for number of ASHA CEUs, instructional level and content area. ASHA CE Provider approval does not imply endorsement of course content, specific products or clinical procedures.

This course is offered for 0.6 ASHA CEUs (Advanced level, Professional area).