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FIGURE 8 | A screenshot of GeoTime.

as our perception and cognition are concerned, the
whole is more than the sum of parts. Most commonly
known Gestalt principles are proximity, similarity,
continuity, closure, figure and ground, and symmetry.
A comprehensive explanation of these principles and
a rich set of examples can be found in How Maps
Work41 in the context of cartography, that is, the
design of geographically based thematic maps.

The proximity principle says that we tend to see
groupings of individual items in a visual arrangement
based on the proximity between these items. Items
that are relatively close to one another tend to give us
a sense of similarity. In other words, we see individual
items in groups of some underlying similarity. This
principle has been adapted by the information visu-
alization community from the early stage. Algorithms
that can arrange information items in this fashion
tap into the proximity principle. Some interesting
examples include Bead42 and Information Mural.43

The similarity principle from Gestalt psychology
says that visual attributes such as the shape, color, and
texture are cues for us to group items, for example,
all the circles in one group and all the triangles in

another. The proximity and similarity principles can
be used simultaneously to reinforce each other.

The Mantra of Visual Information Seeking
The most widely known visual information seeking
mantra is given by Ben Shneiderman, University
of Maryland: Overview first, zoom and filter,
then details-on-demand.44 This mantra insightfully
summarizes the essential elements of interacting with
graphically presented information.

Designers of visual overviews commonly capi-
talize on metaphors that can give users a sense of
intuitiveness and familiarity. Naturally, metaphors
of an information space are particularly popular,
especially in 1990s, ranging from two-dimensional
maps, three-dimensional landscape views and con-
tours, to star fields and galaxies of information. An
important function of an overview is to depict inter-
relationships among units of information. Units of
textual information include words, sentences, docu-
ments, and collections of documents such as websites.
Units of visual information include scenes, episodes,
and libraries of videos.
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Information space metaphors naturally invite
navigational operations such as zoom, pan, tilt, and
rotate. One of the earlier claims and design goals of
information visualization is that good information
visualization should present information to users intu-
itively. Many filtering operations have been adapted
to enable users interact with dynamic information
visualization, including brushing, linking, dynamic
queries, and coordinated views.

In 1996, Shneiderman offered a taxonomy for
visual information seeking.44 The taxonomy divides
general visual information seeking into seven data
types and seven tasks. This taxonomy is one of
the earliest and most influential contributions to the
information visualization field.

Seven Data Types

• one-dimensional data;

• two-dimensional data;

• three-dimensional data;

• temporal data;

• multidimensional data;

• tree data;

• network data.

Seven Tasks

• overview;

• zoom;

• filter;

• details-on-demand;

• relate;

• history;

• extract.

The data type by task taxonomy has influenced
a generation of information visualization researchers.
Other notable efforts include the data state reference
model.3

The Pursuit of Insights
Reflections on insight-centric evaluation are moti-
vated by the increasing concern of how to establish
the effectiveness of interacting with information visu-
alization interfaces. On the one hand, it is almost a
community-wide consensus that insight is the ultimate
goal of information visualization. On the other hand,
the definition of insight in the information visualiza-
tion literature per se has been vague and ambiguous.
The nature of insight has been extensively studied in

the context of scientific discovery in cognitive science,
psychology, and history of science. Few connections
have been established so far between the study of
insight in other disciplines and the field of information
visualization. An intriguing introduction to some
of the recent understanding of the brain activities
that lead to insights can be found in a New Yorker
article The Eureka Hunt.45 The Nature of Insight is
a comprehensive collection of studies of insight.46

In a recently developed explanatory and com-
putational theory of scientific discovery, the nature
of insight is characterized by a brokerage mech-
anism and a burst function of recognition.47 The
brokerage mechanism echoes what is described in
the Eureka Hunt in that one arrives at insights by
linking previously unconnected thoughts. The theory
is computational and it is possible to formulate the
search for insights as a problem of searching for the
potential linkage between even the most unthinkable
relations. Initial studies of transformative discoveries
such as Nobel Prize winning discoveries are particu-
larly promising. This approach is particularly relevant
to visual analytics and insight-based evaluative stud-
ies because they can characterize insightful patterns in
terms of structural and temporal properties.

Within the information visualization commu-
nity, notable efforts on characterizing and measuring
insights include exploratory approaches as opposed
to benchmark-based experimental studies,9 lessons
learned from the first 3 years of InfoVis contests,48

and more recent reflection in the context of visual
analytics.8 An interesting framework of evaluating
interactive visualizations is proposed recently in
Ref 49. The framework is built on top of a generic
conceptual model in human–computer interaction,
namely Don Norman’s Seven Stages of Action.50

According to the Seven Stages of Action, two stages of
interacting with computer interfaces are particularly
problematic: execution and evaluation. The gulf of
execution and the gulf of evaluation are used to refer
to these problematic stages. The gulf of execution,
for example, should be narrowed so that users can
accomplish their tasks smoothly and seamlessly. The
gulf of evaluation should be narrowed so that users
can judge their progress accurately.

Much of the discussions in information visu-
alization on insights primarily address practical and
methodological issues concerning how evaluative
studies should be designed to capture the effectiveness
of an information visualization design in terms of
insights. The types of insights that are relevant
to information visualization and evaluative studies
have theoretical and practical implications. We
found two meta-analysis studies of information

Volume 2, Ju ly /August 2010  2010 John Wi ley & Sons, Inc. 395



Overview www.wiley.com/wires/compstats

visualization.51,52 Given the growing calls for
theoretical foundations in the field, this is expected to
be a significant topic of research.

Theoretical Frameworks
The general consensus, as reported by a recent
workshop and a few other public presentations,
was that information visualization currently lacks
adequate theoretical foundations.53 As a result, many
approaches are ad hoc in nature. A week-long sem-
inar took place at Dagstuhl, Germany in mid-2007,
for example, addressed four potential directions for
developing new theories. The lack of theories becomes
particularly prominent in information visualization
courses and when designing empirical and evaluative
studies.

The search for theoretical foundations increas-
ingly introduces and adopts theories and conceptual
frameworks from other fields and disciplines. For
example, distributed cognition in human–computer
interaction is seen as a potential candidate for a the-
oretical framework for information visualization.54

Norman’s Seven Stages of Action, also in human–com-
puter interaction, provides a new insight into inter-
acting with information visualizations, specifically on
the gulf of execution and the gulf of evaluation.49

Many information visualizations lack a quanti-
tative measure that could indicate the overall quality,
uncertainly, novelty, and other evaluative metrics.
The focus on gulfs of execution and evaluation, for
example, has the potential to make progress in this
direction.

TECHNICAL ADVANCES
Some of the recent developments in information
visualization are worth noting. At the technical

level, scalability issues remain to be a long-lasting
challenge.55 Some of the algorithms developed for
clustering large-scale data sets in machine learning are
particularly appealing, such as Refs 56,57 and one
can expect these algorithms will soon find their ways
to information visualizations.

Edge Bundling
Edge bundling is an emerging strategy to solve a com-
mon problem in visualizing a densely connected graph
due to cluttered images caused by overlapping edges.
Avoiding edge crossings has been long recognized as
one of the constraints that could improve the clarity of
resultant visualizations. Recently, an interesting strat-
egy has emerged—that is the use of edge bundling tech-
niques in a variety of graph visualizations to increase
the clarity of visualized patterns. Bundling reduces
visual clutter. Visualizations with bundled edges make
it easier for viewers to see underlying patterns than
non-bundled versions,58 for example, as shown in Fig-
ure 9. Edge bundling is a generic technique in nature
because it can be applied virtually to all node-and-link
diagrams regardless the underlying layout algorithms.
In this sense, it is similar to other generic display tech-
niques such as fisheye views. A geometry-based edge
bundling example appears recently, showing promi-
nent patterns of migration in the USA59 (Figure 10).

Constraint-Based Graph Drawing
Another trend originated from the graph drawing
community is constraint-based graph drawing. Tim
Dwyer et al. are the leading researchers in this research
area.60 Many graph visualization applications can
benefit from the new development in this direction
because of the generic and valuable role in establishing
visual hierarchies and grouping (Figure 11).

(a) (b)

FIGURE 9 | Bundled edges in
graph visualization.58
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(a)

(c) (d) (e)

(b)

FIGURE 10 | Geometry-based edge bundling.59
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Logarithmic Transformations
One of the problems identified earlier on by the
information visualization community is the tension
between showing more local details while maintaining
users’ contextual awareness. The problem is known
as the focus + context problem. Many widely known
techniques in information visualization were indeed
developed originally to deal with such problems,
notably including fisheye views16 and hyperbolic
views.31 Along a similar vein, Figure 12 shows a
logarithmic view.61 Logarithmic transformations are
commonly used by astronomers when they need to
deal with multiple vast scales. The major advantage
of a logarithmic view is its computational scalability.
Like fisheye views, a logarithmic view also enlarges
some areas of display at the expenses of other
areas. Figure 13 illustrates the use of logarithmic
transformations of the sky. Astronomical objects
distributed across a wide span of multiple scales are
depicted in the same single sky map. See video of
mapping the universe with Sloan Digital Sky Survey.e

Other enabling and supporting techniques
include fast point-feature labeling algorithms,62

and fast network scaling algorithms that improve
semantically desirable but computationally expensive
algorithms such as Pathfinder network scaling.63–66

EMERGING TRENDS AND FUTURE
DIRECTIONS

Mixed-Initiative Interaction
Integrating perceptual guidelines from human vision
with an AI-based mixed-initiative search strategy is
a promising but challenging direction for informa-
tion visualization.67 Mixed-initiative interaction is
motivated by the observation that even experienced
designers cannot be expected to know everything
about how to construct effective visualizations due
to the diverse range of situated requirements. Fur-
thermore, designers often repeatedly utilize the same
basic design strategy. Consequently, the resulting visu-
alization may not be the best possible design option.
It is often more effective to be able to explore the
same set of data from different perspectives through
different visualization designs. Therefore, the goal of
mixed-initiative interaction is to augment designers
with an easy access to the existing body of knowl-
edge of proven and effective visualization design
options in a given scenario. The underlying princi-
ple is very similar to the concept of design pattern
and design language in the field of human–computer
interaction.
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FIGURE 12 | Logarithmic view centered at the Capitol in
Washington.61 Points northwest of the capitol are mapped to a vertical
line in the middle of the image. Points southeast are mapped to the very
left and the very right.
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