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Overview
The blending functions N; ;. (t) for the uniform B-spline curve are just shifted versions of each
other. This implies that we should be able to get a “nice” formula to represent these curves. In

these notes, we develop a matrix formulation for the curve.

The normalized B-spline blending functions are defined recursively by
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where {to, 11, ..., t,+ } iS @ non-decreasing sequence of knots, and k is the order of the curve.

The Quadratic Blending Functions using a Uniform Knot Sequence
Assume that {t¢,t1,to,...,t,} is @ uniform knot sequence, i.e., {0,1,2,...,n}. For the case



k = 3, we obtain
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and by nearly identical calculations,
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and similarly
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These curves are shown in the following figure. They are piecewise quadratic curves, each made
up of three parabolic segments that are joined at the knot values

A

The nonzero portion of these two curves each span the interval between four consecutive knots —
e.g., the nonzero portion of N; 3 spans the interval [1,4]. N, 3 is just a shifted version of N 3, and
in general we can write

Ni3(t) = Nos(t —1i)

So, for example, consider the segment of the curve that corresponds to the interval [2, 3), then



the uniform B-spline can be written as
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and suppose we want to parameterize this curve segment between [0, 1]. This can be written in

matrix form as
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This can be extrapolated to the kth segment of the curve, where
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where
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Matrix Equation for k = 4

It is not too difficult to conclude that the V; 4 blending functions will be piecewise cubic func-
tions. The support of N; 4 will be the interval [i,i + 4] and each of the blending functions will be
shifted versions of each other, allowing us to write

Nia(t) = Noa(t — i)

In this case, the kth segment can be written as
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Summary
In the case of the uniform knot sequence, the blending functions are shifted versions of each
other, and we can exploit this to write each segment of the curve in a matrix form.
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