EXAMPLE What power of 7 is equal to $7^{5} \div 7^{3}$?

We can use multiplication to solve division problems.
To divide 7^{5} by 7^{3}, we look for the power of 7 we multiply by 7^{3} to get 7^{5}.
Since $7^{2} \cdot 7^{3}=7^{5}$, we know $7^{5} \div 7^{3}=7^{2}$.

We can write the quotient as a fraction. $7^{5} \div 7^{3}=\frac{7^{5}}{7^{3}}$.
Writing the powers as products, we cancel three 7's in the numerator and denominator to get

$$
\frac{7^{5}}{7^{3}}=\frac{\cdot x \cdot x \cdot z \cdot 7 \cdot 7}{\overline{2} \cdot \overline{2} \cdot \overline{2}}=7 \cdot 7=7^{2}
$$

As long as a is not zero, to divide a^{m} by a^{n}, we subtract the exponents and keep the same base.

$$
a^{m} \div a^{n}=a^{m-n} \text {. As a fraction, } \frac{a^{m}}{a^{n}}=a^{m-n} \text {. }
$$

PRACTICE Answer each question below.

34. What power of 5 is equal to $5^{18} \div 5^{6}$?
35. What power of 2 can we divide 2^{6} by to get 2^{2} ?
36. \qquad
37. Circle the expression below that is not equal to 6^{5}.

$$
6^{7} \div 6^{2} \quad 6^{2} \cdot 6^{3} \quad 6^{2}+6^{3} \quad 2^{5} \cdot 3^{5} \quad \frac{6^{11}}{6^{6}}
$$

37. What power of 3 is equal to $\frac{3^{12}}{3^{4} \cdot 3^{3}}$?
38. \qquad

In a Product Square puzzle, the product of the three powers in each row and column match the product given above the square.
Below is a Product Square example and its solution.

5^{2}	5^{3}					
	5^{4}					
		5^{3}	\rightarrow	5^{2}	5^{3}	5^{4}
:---:	:---:	:---:				
5^{3}	5^{4}	5^{2}				
5^{4}	5^{2}	5^{3}				

PRACTICE

Fill each missing entry in the Product Squares below with a power so that each row and column have the given product.
38. Write each entry as a power of 2.
2^{21}

2^{6}	2^{6}	
	2^{8}	2^{8}

40. Write each entry as a perfect square.
120^{2}

41. Write each entry as a different positive power of 7 .
7^{15}

42. Write each entry as a power of 2,3 , or 6 with a positive exponent.

$$
2^{8} \cdot 3^{6}
$$

		3^{4}
	2^{2}	
		6^{2}

We can use zero as an exponent. Any power with an exponent of 0 is equal to 1 . This works nicely with our exponent rules. For example,

$$
7^{4} \div 7^{4}=7^{4-4}=7^{0}=1 .
$$

Exponents can also be negative.

We can use exponent rules to see how to define negative exponents. For example,

$$
7^{3} \div 7^{5}=\frac{7^{3}}{7^{5}}=\frac{\bar{x} \cdot \bar{x} \cdot \overline{7}}{7 \cdot 7 \cdot \bar{x} \cdot \bar{\prime}}=\frac{1}{7 \cdot 7}=\frac{1}{7^{2}} .
$$

Our exponent rules for division suggest that

$$
7^{3} \div 7^{5}=7^{3-5}=7^{-2} .
$$

So, we define $7^{-2}=\frac{1}{7^{2}}$.

As long as a is not zero, a^{-n} is used to represent the reciprocal of a^{n}.

$$
a^{-n}=\frac{1}{a^{n}} .
$$

PRACTICE Answer each question below.

42. Write 5^{-2} as a fraction in simplest form.
43. \qquad
44. Write 2^{-5} as a fraction in simplest form.
45. Write $\frac{1}{11^{3}}$ as a power of 11 .
46. \qquad
47. Write $\frac{1}{25^{2}}$ as a power of 5 .
48. \qquad

PRACTICE Answer each question below.

46. Simplify $\left(5^{4} \cdot 5^{-4}\right)+\left(4^{3} \cdot 4^{-3}\right)+\left(3^{2} \cdot 3^{-2}\right)$.
47.
48. \qquad $<$ \qquad
49. Order $4^{-3}, 3^{-4}$, and 2^{-5} from least to greatest. \qquad
50. Express $2^{-3}+3^{-2}$ as a fraction in simplest form.
51. \qquad
52. Write $\left(2^{-2}\right)-\left(2^{-3}\right)-\left(2^{-4}\right)$ as a fraction in simplest form.
53. \qquad
54. For how many integer values of n is 2^{n} between 3^{-1} and 3^{-3} ?
55. \qquad
56. What power of 4 is equal to 8^{-2} ?
57. \qquad
58. Write $2^{-4} \cdot 6^{2} \cdot 5^{-3}$ as a decimal.
59. \qquad
