

The Anatomy Building University of Copenhagen, Frederiksberg

Contents

- Stem cell definitions
- Cell differentiation potency
- The stem cell hierarchy: Pluripotent, multipotent and unipotent stem cells
- Induced pluripotent stem cells for disease modeling
- Stem cell therapy
- Conclusions

Contents

- Stem cell definitions
- Cell differentiation potency
- The stem cell hierarchy: Pluripotent, multipotent and unipotent stem cells
- Induced pluripotent stem cells for disease modeling
- Stem cell therapy
- Conclusions

Stem cell definitions

- Self-renew (indefinite multiplication)
- Differentiate into specialized cell types (differentiation potency)

Conrad Waddington (1957)

Stem cell

Intermediate progenitors

Terminally differentiated

Contents

- Stem cell definitions
- Cell differentiation potency
- The stem cell hierarchy: Pluripotent, multipotent and unipotent stem cells
- Induced pluripotent stem cells for disease modeling
- Stem cell therapy
- Conclusions

Totipotency

- Totipotency: All embryomic and extra-embryonic cell types
- Pluripotency: All embryonic cell types
- Multipotency: Several cell types
- Unipotency: A single cell type

Pluripotency

Multipotency

Contents

- Stem cell definitions
- Cell differentiation potency
- The stem cell hierarchy: Pluripotent, multipotent and unipotent stem cells
- Induced pluripotent stem cells for disease modeling
- Stem cell therapy
- Conclusions

- Pluripotent stem cells (PSCs)
 - Embryonic stem cells (ESCs)
 - Induced pluripotent stem cells (iPSCs)
- Multipotent stem cells
 - Multipotent stem cells are often referred to as adult stem cells (even though they are also found in embryos)
 - Hematopoietic stem cells (HSCs)
 - Mesenchymal stem cells (MSCs)
 - Neural stem cells (NSCs)
- Unipotent stem cells
 - Epidermal stem cells (EpiSCs)

- Pluripotent stem cells (PSCs)
 - Embryonic stem cells (ESCs)
 - Induced pluripotent stem cells (iPSCs)
- Multipotent stem cells
 - Multipotent stem cells are often referred to as adult stem cells (even though they are also found in embryos)
 - Hematopoietic stem cells (HSCs)
 - Mesenchymal stem cells (MSCs)
 - Neural stem cells (NSCs)
- Unipotent stem cells
 - Epidermal stem cells (EpiSCs)

Ectoderm Mesoderm Endoderm

Human embryonic stem cells (hESCs) - 1998

Thompson et al. (1998)

- Pluripotent stem cells (PSCs)
 - Embryonic stem cells (ESCs)
 - Induced pluripotent stem cells (iPSCs)
- Multipotent stem cells
 - Multipotent stem cells are often referred to as adult stem cells (even though they are also found in embryos)
 - Hematopoietic stem cells (HSCs)
 - Mesenchymal stem cells (MSCs)
 - Neural stem cells (NSCs)
- Unipotent stem cells
 - Epidermal stem cells (EpiSCs)

Induced pluripotent stem cells (iPSCs)

Conrad Waddington (1957)

Nobelprize 2012 in medicine

John B Gurdon

Shinya Yamanaka

- Pluripotent stem cells (PSCs)
 - Embryonic stem cells (ESCs)
 - Induced pluripotent stem cells (iPSCs)
- Multipotent stem cells
 - Multipotent stem cells are often referred to as adult stem cells (even though they are also found in embryos)
 - Hematopoietic stem cells (HSCs)
 - Mesenchymal stem cells (MSCs)
 - Neural stem cells (NSCs)
- Unipotent stem cells
 - Epidermal stem cells (EpiSCs)

- Pluripotent stem cells (PSCs)
 - Embryonic stem cells (ESCs)
 - Induced pluripotent stem cells (iPSCs)
- Multipotent stem cells
 - Multipotent stem cells are often referred to as adult stem cells (even though they are also found in embryos)
 - Hematopoietic stem cells (HSCs)
 - Mesenchymal stem cells (MSCs)
 - Neural stem cells (NSCs)
- Unipotent stem cells
 - Epidermal stem cells (EpiSCs)

Hematopoietic stem cells (HSCs)

- Pluripotent stem cells (PSCs)
 - Embryonic stem cells (ESCs)
 - Induced pluripotent stem cells (iPSCs)
- Multipotent stem cells
 - Multipotent stem cells are often referred to as adult stem cells (even though they are also found in embryos)
 - Hematopoietic stem cells (HSCs)
 - Mesenchymal stem cells (MSCs)
 - Neural stem cells (NSCs)
- Unipotent stem cells
 - Epidermal stem cells (EpiSCs)

Reside in different organs

Definition

- Adhere to plastic
- Positive for CD73, CD90 and CD105
- Negative for CD14, CD34, CD45 and HLA-DR
- · In vitro differentiation into
 - Chondroblasts
 - Osteoblasts
 - Adipocytes
- Further differentiation potentials
 - Myocytes
 - Neurons
 - Oligodendrocytes
 - Hepatocytes
 - Pancreocytes

Oryan et al. (2017); Ullah et al. (2015); Noël et al. (2008)

- Pluripotent stem cells (PSCs)
 - Embryonic stem cells (ESCs)
 - Induced pluripotent stem cells (iPSCs)
- Multipotent stem cells
 - Multipotent stem cells are often referred to as adult stem cells (even though they are also found in embryos)
 - Hematopoietic stem cells (HSCs)
 - Mesenchymal stem cells (MSCs)
 - Neural stem cells (NSCs)
- Unipotent stem cells
 - Epidermal stem cells (EpiSCs)

Neural stem cells (NSCs)

Reside in CNS

Differentiate into

Neuronal subtypes

Oligodendrocytes

- Pluripotent stem cells (PSCs)
 - Embryonic stem cells (ESCs)
 - Induced pluripotent stem cells (iPSCs)
- Multipotent stem cells
 - Multipotent stem cells are often referred to as adult stem cells (even though they are also found in embryos)
 - Hematopoietic stem cells (HSCs)
 - Mesenchymal stem cells (MSCs)
 - Neural stem cells (NSCs)
- Unipotent stem cells
 - Epidermal stem cells (EpiSCs)

Epidermal stem cells (EpiSC)

Reside in skin

Differentiate into

Keratinocytes

Contents

- Stem cell definitions
- Cell differentiation potency
- The stem cell hierarchy: Pluripotent, multipotent and unipotent stem cells
- · Induced pluripotent stem cells for disease modeling
- Stem cell therapy
- Conclusions

How can iPSCs help modeling dementia?

Access to the human target: iPSC-derived patient-specific neurons

Frontotemporal dementia localized to chromosome 3 (FTD3)

Mutation in CHMP2B on chromosome 3 resulting in dementia with early onset

iPSC-based modeling of FTD3

Generation of integration-free patient-specific iPSCs

Fibroblasts from skin biopsy

IPSC

L-MYC

LIN28

OCT3/4

Shp53 SOX2

KLF4

iPSC-based modeling of FTD3

Courtesy of Kristine Freude

		? 🔀	
	Find and Replace Find Replace Find what: Replace with: Replace All Replace Find All Find Next	Options >>	
Trinity	/ College, Dublin		

Courtesy of Jacob Corn

Gene editing of iPSCs

ssODN with correct template sequence

Anna Poon, Benjamin Schmid and Kristine Freude

iPSC-based modeling of FTD3

Neural differentiation of iPSCs

Neural differentiation of iPSCs

Electron microscopy of iPSC-derived neurons

RNAseq analyses of iPSC-derived neurons

RNAseq analyses of iPSC-derived neurons

Major FTD3 misregulated genes: Endosomes, mitochondria and iron homeostasis

Mitochondrial defects

Astrocyte reactivity and impaired autophagy

Katarina Stoklund Dittlau

Contents

- Stem cell definitions
- Cell differentiation potency
- The stem cell hierarchy: Pluripotent, multipotent and unipotent stem cells
- Induced pluripotent stem cells for disease modeling
- Stem cell therapy
- Conclusions

"Stem cell tourism" – false hope for real money

"one of the most dangerous elements of our culture: that we have forgotten how to die." (Jill Lepore)

Important issues in stem cell therapy

- Cell type
 - Multipotent (e.g. MSCs, NSCs)
 - Pluripotent (e.g. ESCs, iPSCs)
 - Autologous or allogenic cells
 - The "super donor" homozygous for human leucocyte antigen (HLA) will match heterozygous patients with just one match
 - "Super donor" iPSC banks established in Japan, China and US
- Large scale manufacturing of cells
- Principle for administration
 - Scaffolds
 - Homing
 - Engraftment vs. stimulatory effects of secretome
- Legal regulation
 - Special "fast track" approval processes in US, EU and Japan

A brief overview of clinical trials in stem cell therapy categorized according to stem cell types

Hematopoietic stem cells – the forerunner

1	
BrainStem	

Indication	#studies	Results	Reference
Bone marrow transplantation	3,309	Reestablishment of hematopoietic function First allogenic transplantation 1968 Dr. E Donnall Thomas Nobel Prize 1990	(Gatti et al., 1968)
Cancer	324	Chimeric antigen receptor (CAR) CAR T Cell therapy Several FDA approved treatments	(Androulla and Papadopoulou. 2018)

ClinicalTrials.gov; U.S. National Library of Medicine

Indication	#studies	Results	Reference
Burns, chronic wounds, autoimmunity and urethral reconstruction	20	Restoration of normal skin function	(Jackson et al., 2017)

Mesenchymal stem cells – a wide field

Indication	#studies	Results	Reference
Ischemic heart disease	244	Improved cardiac function, effect potentially due to secreted chemokines	(Jeong et al., 2018)
Bone and cartilage defects	194	Accelerated healing, mechanisms still controversial	(Oryan et al., 2017)
Degenerative disc disease	25	Significant pain relief	(Orozco et al., 2011)
Immunomodulation	58	Clear immunosuppressive properties, mechanisms still controversial	(Wang et al., 2018)
Diabetes	56	Positive effects, mechanisms still controversial	(Wehbe and Hawat, 2017)
Spinal cord injury	46	Functional repair, mechanisms still controversial	(Qu and Zhang, 2017)
Parkinson's disease	9	Lack of convincing results	(Palmer et al., 2016)
Retinopathy incl. macular degeneration	6	Some visual improvement but also side effects	(Öner, 2018)

ClinicalTrials.gov; U.S. National Library of Medicine

Neural stem cells – a niche

Indication	#studies	Results	Reference
Parkinson's disease	7	Some clinical improvement but inconsistent	(Palmer et al., 2016)
Spinal cord injury	4	Functional repair but inconsistent	(Wright et al., 2018)
Retinopathy incl. macular degeneration	1	Lack of updated results	(Tsukamoto et al., 2013)

Indication	#studies	Results	Reference
Retinopathy incl. macular degeneration	19	ESC-derived retinal pigmented epithelium visual improvement but not consistent	(Schwartz et al., 2015; Öner, 2018)
Diabetes	3	Lack of updated results	(Cheng et al., 2016)
Spinal cord injury	1	Significant clinical improvements	(Schroff, 2016)
Parkinson's disease	1	Lack of updated results	(Palmer et al., 2016)
Ischemic heart disease	1	Improved cardiac function	(Menasché et al., 2015)

Induced pluripotent stem cells

- a new era

Indication	#studies	Results	Reference
Retinopathy incl. macular degeneration	2	No results posted, Japanese study discontinued due to safety reasons	(Öner, 2018)
Parkinson's disease	1	Lack of updated results	(Cheng et al., 2016)
Spinal cord injury	1	Significant clinical improvements	(Schroff, 2016)
Parkinson's disease	0	Projected	(Palmer et al., 2016)

Parkinson's disease and iPSC

Jun Takahashi (left) and colleagues explained their plans for a trial in Parkinson's disease patients at a press conference at Kyoto University in Japan today. THE YOMIURI SHIMBUN/AP IMAGES

First-of-its-kind clinical trial will use reprogrammed adult stem cells to treat Parkinson's

Parkinson's disease

Parkinson's disease

Grafts of Fetal Dopamine Neurons Survive and Improve Motor Function in Parkinson's Disease

OLIE LINDVALL,* PATRIK BRUNDIN, HÄKAN WIDNER, STIG REIENGRONA, BJÖRN GUSTAVII, RICHARD FRACKOWIAK, KLAUS L. LEENDERS, GUY SAWLE, JOHN C. ROTHWELL, C. DAVID MARSDEN, ANDERS BJÖRKLUND

Science 1990

6-8 week fetal mesencephalon

Suspension of dopaminergic progenitor cells

Uni- or bilateral stereotaxic injections to immunosuppressed patients

How to produce dopaminergic progenitors without aborted fetuses?

Contents

- Stem cell definitions
- Cell differentiation potency
- The stem cell hierarchy: Pluripotent, multipotent and unipotent stem cells
- Induced pluripotent stem cells for disease modeling
- Stem cell therapy
- Conclusions

Conclusions

- Stem cells are defined by self-renewal and differentiation potency
- Stem cells are best categorized according to their differentiation potency (pluripotent, multipotent, unipotent), not by their origin in embryos or adults
- Induced pluripotent stem cells (iPSCs) allow for patient-specific disease modeling
- Numerous clinical trials are registered on multipotent stem cell therapy
- First clinical trials are registered on pluripotent (ESC, iPSC) stem cell therapy

BrainStem collaborating partners

- University of Copenhagen
- Danish Dementia Research Center
- University of Southern Denmark
- Aarhus University
- Bioneer
- Lundbeck
- Innovative Concepts in Drug Development (F)
- Lund University (S)
- Biotalentum (H)

Financial support

- Innovation Fund Denmark
- EU Marie Curie (STEMMAD)
- Copenhagen Consortium for Designer Organisms

BrainStem
Stem cell center of excellence in neurology

