
RTI Connext DDS

Combined Latency and Throughput

Performance Test

Getting Started Guide

Version 5.2.4

© 2016 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
July 2016.

Trademarks
Real-Time Innovations, RTI, NDDS, RTI Data Distribution Service, DataBus, Connext, Micro DDS, the RTI
logo, 1RTI and the phrase, “Your Systems. Working as one,” are registered trademarks, trademarks or
service marks of Real-Time Innovations, Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-
Time Innovations, Inc. The software described in this document is furnished under and subject to the RTI
software license agreement. The software may be used or copied only under the terms of the license
agreement.

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

https://support.rti.com/

Contents

1 Supported Platforms..2

2 Release Notes ..2
2.1 What’s New in 5.2.4..2

2.1.1 Added Security Plugin Compatibility...2
2.1.2 New Platforms ..2
2.1.3 Improved Way to Measure Elapsed Intervals ...3

2.2 Previous Releases..3
2.2.1 What’s New in 5.2.0 ...3
2.2.2 What’s Fixed in 5.2.0 ..4

2.3 Known Issues ..4
2.3.1 Do Not Use Security Options when Testing RTI Connext DDS 5.2.3 or Earlier4
2.3.2 Static Linking on Windows Systems for C++ APIs Requires Manual Changes to

Solution..4

3 Overview..5

4 Download Instructions..5

5 Installation Instructions..5
5.1 UNIX-Based Systems ...5
5.2 Windows Systems...6

6 Building the Application ..6

7 Starting the Test ..8

8 Test Parameters ...10
8.1 Spinning vs. Sleeping...16
8.2 Send-Queue Size and Queue-Full Behavior ...17
8.3 Number of Iterations vs. Latency Count...18
8.4 Warming Up ..18
8.5 WaitSet Event Count and Delay ...18
8.6 How to Measure Latency for a Given Throughput ...18
8.7 Auto Tuning and Turbo Mode..19
iii

9 Example Command Lines for Running the Performance Test ..20
9.1 1-1, Multicast, Best Latency as a Function of Message Size ...20
9.2 1-1, Multicast, Maximum Throughput as a Function of Message Size (with Batching)20
9.3 1-1, Multicast, Latency vs. Throughput for 200-byte Messages (with Batching)21
9.4 1-to-1, Multicast, Reliable UDPv4, All Sizes ...21
9.5 1-to-1, Unicast, Best-Effort, UDPv4, 1 Size..21
9.6 1-to-1, Multicast, Reliable, UDPv4, Batching Enabled ..21
9.7 1-to-2, Multicast, Reliable, UDPv4 ...21
9.8 2-to-1, Multicast, Reliable, UDPv4 ...22
9.9 1-to-1, Unicast, Reliable, UDPv4, Using Security: Signing Packages, Encrypting Data22

10 Example Output..22

11 Secure Certificates, Governance and Permission Files...23

12 Optimizing Your OS for Network Performance...23
12.1 Optimizing Linux Systems..23
12.2 Optimizing Windows Systems ...23
iv

Testing Performance

This document describes how to run a combined latency and throughput test application for
RTI® Connext™ DDS.

The test measures what is sometimes called loaded latency—latency at a given throughput level.
It can help you answer questions such as:

❏ For a given publishing configuration (e.g., queue size, batching settings), sample size,
and subscribing configuration (e.g., queue size, Listener vs. WaitSet) what is the through-
put of my network?

❏ When my network is heavily loaded, what latency can I expect?

❏ For a given configuration, what is the best-case latency with no other traffic on the net-
work?

For examples of specific configurations, see Example Command Lines for Running the Perfor-
mance Test (Section 9).

Note: All references in this document to “C++” refer to both the Traditional and Modern C++
APIs unless otherwise noted.
1

Supported Platforms
1 Supported Platforms
The performance test application provides makefiles/projects for the architectures in Table 1.1.
You can also create your own.

2 Release Notes

2.1 What’s New in 5.2.4

2.1.1 Added Security Plugin Compatibility

The performance test can now evaluate scenarios using the RTI Secure DDS plugin. Several com-
mand-line options have been added to enable the most important scenarios involving discovery
(encrypted discovery, encrypted data, packet signing, etc.). Example Certificates and gover-
nance files are also provided so the out-of-the-box experience does not involve generating them.
For more information about the security plugin, see the RTI Secure DDS Getting Started Guide.

2.1.2 New Platforms

This release adds support for the platforms in Table 1.1. For more information on these plat-
forms, see the RTI Connext DDS Core Libraries Platform Notes.

Table 1.1 Performance Test’s Supported Platforms

Language and Operating System CPU Compiler RTI Architecture
Abbreviation

C++ on
UNIX-based
Systems

CentOS 5.4, 5.5 (2.6 kernel) x64 gcc4.1.2 x64Linux2.6gcc4.1.2

CentOS 7.0 (3.x kernel) x64 gcc4.8.2 x64Linux3gcc4.8.2

Red Hat® Enterprise Linux 4.0 (2.6 kernel)
x86 gcc3.4.3 i86Linux2.6gcc3.4.3

x64 gcc3.4.5 x64Linux2.6gcc3.4.5

Red Hat Enterprise Linux 5.0 (2.6 kernel)
x86 gcc4.1.1 i86Linux2.6gcc4.1.1

x64 gcc4.1.1 x64Linux2.6gcc4.1.1

Red Hat Enterprise Linux 5.1, 5.2, 5.4, 5.5
(2.6 kernel)

x64 gcc4.1.2 x64Linux2.6gcc4.1.2

Red Hat Enterprise Linux7.0 (3.x kernel) x64 gcc4.8.2 x64Linux3gcc4.8.2

Ubuntu® 14.04 LTS x64 gcc4.8.2 x64Linux3gcc4.8.2

C++ and C# on
OS X Systems

OS X 10.11 x64 clang 7.0 x64Darwin15clang7.0

C++ and C# on
Windows Systems

All Windows® architectures listed in the RTI Connext DDS Core Libraries Platform Notes

Table 2.1 Platforms Added in 5.2.4

Language and Operating System CPU Compiler RTI Architecture
Abbreviation

C++ on UNIX-
based Systems

CentOS 7.0 (3.x kernel) x64 gcc4.8.2 x64Linux3gcc4.8.2

Red Hat Enterprise Linux7.0 (3.x kernel) x64 gcc4.8.2 x64Linux3gcc4.8.2

Ubuntu 14.04 LTS x64 gcc4.8.2 x64Linux3gcc4.8.2
2

Release Notes
2.1.3 Improved Way to Measure Elapsed Intervals

The performance test now uses the High Precision Clock offered by RTI Connext DDS middle-
ware, instead of calling directly to the generic functions to get time (which are OS dependent
and may not be precise enough).

2.2 Previous Releases

2.2.1 What’s New in 5.2.0

2.2.1.1 New Platforms

This release added support for these platforms:

2.2.1.2 Removed Platforms

Project files for Visual Studio 2005 are no longer provided.

2.2.1.3 New Command-Line Options

This release includes the following new command-line options:

❏ -pubRate

A new option, -pubRate, allows you to limit the throughput of the publisher application
by specifying the number of samples per second to be sent.

❏ -keyed

In previous releases, to switch between using keyed and unkeyed types, you had to
regenerate and recompile the test. Starting with this release, you can specify keyed types
at execution time by using the new -keyed option. To use unkeyed types (the default),
omit -keyed.

C++ and C# on
OS X Systems

OS X 10.11 x64 clang 7.0 x64Darwin15clang7.0

C++ and C# on
Windows Systems

All Windows architectures listed in the RTI Connext DDS Core Libraries Platform
Notes that compile with Visual Studio 2015

Table 2.1 Platforms Added in 5.2.4

Language and Operating System CPU Compiler RTI Architecture
Abbreviation

C++ on a UNIX-based System

x32
CentOS 6.x (2.6 kernel) i86Linux2.6gcc4.4.5

Red Hat Enterprise Linux 6.x i86Linux2.6gcc4.4.5

x64

CentOS 6.x (2.6 kernel) x64Linux2.6gcc4.4.5

OS X 10.8 (Darwin 12) x64Darwin12clang4.1

OS X 10.10 (Darwin 14) x64Darwin14clang6.0

Red Hat Enterprise Linux 6.x (2.6 kernel) x64Linux2.6gcc4.4.5

 Ubuntu 12.04 (3.x kernel) x64Linux3.xgcc4.6.3

C++ on a Windows System
x32 Visual Studio 2013 i86Win32VS2013

x64 Visual Studio 2013 x64Win32VS2013

C# on a Windows System
x32 Visual Studio 2013 i86Win32VS2013

x64 Visual Studio 2013 x64Win32VS2013
3

Release Notes
❏ -executionTime

A new option, -executionTime, allows you to limit the duration of the test by specifying
the number of seconds to run the test.

2.2.1.4 Added Support for Modern API C++ Implementation

The performance test has been ported to use the new Modern C++ API implementation. In addi-
tion to the Traditional C++ API implementation, we now offer equivalent code that implements
the Modern C++ API. This new executable is build as a separate project/makefile and includes
the exact same functionalities as the existing language implementations.

2.2.1.5 Added 99.9999 Percentile in Latency Report

The publisher side of the performance test has been modified to measure up to the 99.9999 per-
centile for latency.

2.2.1.6 C++ Implementations (Traditional and Modern API) Now use High Precision Clock to Measure Time

The way in which the performance test gets timestamps has been improved for C++. Now it
uses the High Precision Clock implementation provided by the Connext DDS C API, which will
choose the most precise clock implemented in the system.

2.2.1.7 Removed .ini Configuration File

The performance test no longer requires a “.ini” configuration file. Now you can configure
everything with command-line parameters. The .ini configuration file and its parsing have been
removed. This reduces the code and now the test depends on fewer external libraries.

2.2.2 What’s Fixed in 5.2.0

2.2.2.1 Degraded Performance when Using Turbo Mode

When using the command-line option -enableTurboMode, the resource limits max_samples
and max_batches were not properly set in the DataWriter’s QoS. This improper configuration
resulted in performance degradation. This problem has been resolved.

[RTI Issue ID PERFTEST-27]

2.2.2.2 Potential Segmentation Fault due to Invalid Message ID

In the previous release, if an invalid value was found for message.entity_id, this could have
caused a segmentation fault. This problem has been resolved.

[RTI Issue ID PERFTEST-76]

2.3 Known Issues

2.3.1 Do Not Use Security Options when Testing RTI Connext DDS 5.2.3 or Earlier

When using this version of the performance test (5.2.4) against RTI Connext DDS 5.2.3 or earlier,
do not use any security-related command-line options.

Those options cause the test to try to load the RTI Secure DDS plugin, which isn’t supported in
RTI Connext DDS 5.2.3 or earlier. In this case, if you start the test with a security-related option,
the test will fail and report an error that the security library cannot be loaded.

2.3.2 Static Linking on Windows Systems for C++ APIs Requires Manual Changes to Solution

The provided solutions for compiling the C++ APIs only support dynamic linking. Manual tun-
ing of the solution is required to compile statically.
4

Overview
3 Overview
The publishing side of the test writes data as fast as it can. Every few samples (configured
through the command line), it sends a special sample requesting an echo from the subscribing
side. It uses this ‘request -> echo’ exchange to measure round-trip latency.

As you will see in Section 8, there are several command-line options, including ones to desig-
nate whether the application will act as the publisher or subscriber.

You will start multiple copies of the application (typically 1 publisher and 1 or more subscrib-
ers):

❏ The publishing application publishes throughput data; it also subscribes to the latency
echoes.

❏ The subscribing applications subscribe to the throughput data, in which the echo
requests are embedded; they also publish the latency echoes.

The publisher prints the latency test results; the subscriber prints the throughput results.

4 Download Instructions
Download the test from the RTI Community Forum, http://community.rti.com/. Search for
Performance Test.

If you need help with the download process, contact support@rti.com.

5 Installation Instructions

5.1 UNIX-Based Systems

Follow the instructions below. You do not need administrator privileges. All directory locations
in this document are meant as examples only; adjust them to suit your site.

1. Make sure you have GNU's version of the tar utility, gtar (which handles long file names)
and the unzip utility, gunzip. (On Linux systems, tar generally is gtar and unzip is gun-
zip. On Solaris systems, these utilities are separate.)

2. Use gunzip and gtar to extract the distribution into a directory of your choice. For exam-
ple:
5

http://community.rti.com/

Building the Application
gunzip rtiperftestdds5xy.tar.gz
 gtar xvf rtiperftestdds5xy.tar

The performance test files will be extracted into <your extraction directory>/rtiperft-
est.5.x.y (where 5.x.y represents the current release number).

3. Make sure the NDDSHOME variable is set to your RTI Connext DDS installation direc-
tory, for example, /opt/rti_connext_dds-5.x.y

4. If you plan to use the dynamically linked libraries when compiling the C++ or Java APIs:
Make sure the appropriate ${NDDSHOME}/lib/<architecture> directory is in the
LD_LIBRARY_PATH environment variable (or DYLD_LIBRARY_PATH if you are using
an OS X system) to pick up the shared libraries.

5. If you plan to use the RTI Secure DDS plugin: Make sure the rti_secure_dds-5.x.y host
and target packages are correctly installed on top of your RTI Connext DDS installation.
You should also have access to the libraries for OpenSSL® 1.0.2g.

The test is provided in source code only—after installation, you will need to build the applica-
tion (see Section 6).

5.2 Windows Systems

Follow the instructions below. You do not need administrator privileges. All directory locations
in this document are meant as examples only; adjust them to suit your site.

1. Right-click the distribution file and extract its contents into a directory of your choice.

The performance test files will be extracted into <your extraction directory>/
rtiperftest.5.x.y.

2. Make sure the NDDSHOME variable is set to your RTI Connext DDS installation direc-
tory, for example, C:\Program Files\rti_connext_dds-5.x.y.

3. Make sure the appropriate %NDDSHOME%\lib\<architecture> directory is in the
Path environment variable (so that it picks up the shared library). Or, you can copy the
DLLs from %NDDSHOME%\lib\<architecture> into the directory where the
perftest_<language> executable is once you’ve built the test (see Building the Applica-
tion (Section 6)).

4. If you plan to use the RTI Secure DDS plugin, make sure the rti_secure_dds-5.x.y host
and target packages are correctly installed on top of your RTI Connext DDS installation.
You should also have access to the libraries for OpenSSL 1.0.2g.

The test is provided in source code only—after installation, you will need to build the applica-
tion (see Building the Application (Section 6)).

6 Building the Application
First, as described above, make sure the environment variable NDDSHOME is set to the direc-
tory containing your RTI Connext DDS installation.

Note: All references in this document to “C++” refer to both the Traditional and Modern C++
APIs unless otherwise noted.
6

Building the Application
Examples of how to build the application:

❏ C++ on a UNIX-Based System—no RTI Secure DDS plugin

• To link statically:

$ cd rtiperftest.5.x.y/perftest_cpp
$ gmake -f Makefile.<architecture>
$ cd rtiperftest.5.x.y/perftest_cpp2
$ gmake -f Makefile.<architecture>

(Where <architecture> is the architecture that you want to build.)

For example, to build on a Red Hat Enterprise Linux 5 32-bit system:

$ gmake -f Makefile.i86Linux2.6gcc4.1.1

• To link dynamically: Define the variable RTI_PERFTEST_DYNAMIC_LINKING.
Following the previous example:

$ gmake -f Makefile.i86Linux2.6gcc4.1.1
RTI_PERFTEST_DYNAMIC_LINKING=1

Makefiles for some architectures are included as examples. If your architecture’s make-
file is not provided, you can create your own makefile based on the shipped example
makefiles.

❏ C++ (Traditional API only) on a UNIX-Based System — with RTI Secure DDS plugin

To enable the RTI Secure DDS plugin in the performance test, you need to define a vari-
able when compiling using the makefiles:

• To link statically: Define the RTI_SECURE_PERFTEST variable and provide the
path to the OpenSSL home folder:

$ cd rtiperftest.5.x.y/perftest_cpp
$ gmake -f Makefile.<architecture> RTI_SECURE_PERFTEST=1
 RTI_OPENSSLHOME=<your_openssl_home>
$ cd rtiperftest.5.x.y/perftest_cpp2
$ gmake -f Makefile.<architecture> RTI_SECURE_PERFTEST=1
 RTI_OPENSSLHOME=<your_openssl_home>

• To link dynamically: Define the RTI_SECURE_PERFTEST variable and provide
the flag for dynamic linking: RTI_PERFTEST_DYNAMIC_LINKING.

$ cd rtiperftest.5.x.y/perftest_cpp
$ gmake -f Makefile.<architecture> RTI_SECURE_PERFTEST=1
 RTI_PERFTEST_DYNAMIC_LINKING=1
$ cd rtiperftest.5.x.y/perftest_cpp2
$ gmake -f Makefile.<architecture> RTI_SECURE_PERFTEST=1
 RTI_PERFTEST_DYNAMIC_LINKING=1

❏ C++ and C# on a Windows System

1. Open the file, perftest-<architecture>.sln, in Visual Studio (where <architecture> is the
architecture that you want to build).

2. Projects and solution files for some architectures are included in the example. If your
architecture’s file is not provided, you can create your own project and solution files
based on the shipped example projects and solution files.

3. For better performance, select the Mixed Platforms, Release configuration in the
Standard toolbar in Visual Studio.
7

Starting the Test
4. From the Build menu, select Build Solution.

5. No extra steps or variable definitions are needed when intending to build using the
RTI Secure DDS plugin.

❏ Java on UNIX-Based or Windows Systems

You will need:

• A build tool called Ant, which is available free from http://ant.apache.org/

• JDK 1.7. The latest JDK version can be found here:
http://java.sun.com/javase/downloads/index.jsp

• The JAVA_HOME environment variable must be set to the JDK installation direc-
tory (because Ant uses this variable).

Enter:

$ cd rtiperftest.5.x.y/perftest_java
$ ant -propertyfile ../resource/properties/dds_release.properties

7 Starting the Test
The test is provided in C++ (Modern and Traditional APIs), C#, and Java. The list below identi-
fies how to run the executables, once you have built them, and how to pass configuration
parameters to them. For detailed descriptions of the test parameters, see Test Parameters (Sec-
tion 8). For example test configurations, see Example Command Lines for Running the Perfor-
mance Test (Section 9).

When running the test, keep in mind that a throughput test will necessarily place a heavy load
on your network and potentially on your CPU(s) as well. For the most accurate results, and the
fewest complaints from your coworkers and IT department, run the test when and where you
have a subnet to yourself. The test is designed to measure latency under loaded network condi-
tions; it will produce those loads itself: there is no need to produce them externally (and your
throughput results may not be meaningful if you do).

❏ The C++ and C# executables are in these directories:

• <installation directory>/bin/<architecture>/Release

• <installation directory>/bin/<architecture>/Debug

Where <architecture> depends on your architecture, such as i86Linux2.6gcc4.3.4 or
i86Win32VS2008.

You can differentiate the executables for the two C++ implementations (Traditional and
Modern) by the name: the Traditional C++ API implementation uses perftest_cpp and
the Modern C++ API implementation is named perftest_cpp2.

The test uses an XML configuration file and locates this file based on paths relative to the
directory from which the test is run. Therefore, to use this configuration file:

Traditional C++:

• bin/<architecture>/Release/perftest_cpp <-pub|-sub> [parameters] or

• bin/<architecture>/Debug/perftest_cpp <-pub|-sub> [parameters]

Modern C++:

• bin/<architecture>/Release/perftest_cpp2 <-pub|-sub> [parameters] or
8

http://java.sun.com/javase/downloads/index.jsp
http://www.eclipse.org/
http://ant.apache.org/

Starting the Test
• bin/<architecture>/Debug/perftest_cpp2 <-pub|-sub> [parameters]

When using dynamic linking on UNIX-based and Windows systems:

1. If you compiled the performance test executable dynamically, add the
$NDDSHOME/lib/<architecture> folder to your LD_LIBRARY_PATH/PATH vari-
able, as described in Installation Instructions (Section 5).

2. When using RTI Secure DDS, add the OpenSSL libraries in $OPENSSLHOME/
<debug or release>/lib to the LD_LIBRARY_PATH/PATH variable:

• On UNIX-based systems, add $OPENSSLHOME/<debug or release>/lib to
LD_LIBRARY_PATH

• On Windows systems, add $OPENSSLHOME/<debug or release>/bin to PATH

❏ The Java script that is used to run the Java example is in the <installation directory>/
scripts directory.

As described in Installation Instructions (Section 5), you should have already set your
LD_LIBRARY_PATH (for UNIX-based systems) or Path (for Windows systems) so that
the application can pick up the native shared libraries on which Connext DDS depends. If
you have not, you can set the environment variable RTI_PERFTEST_ARCH to your spe-
cific architecture and let the run script set LD_LIBRARY_PATH or Path for you (assum-
ing your NDDSHOME environment variable is already set).

For example:

• If you are using a Windows 32-bit architecture:

set RTI_PERFTEST_ARCH=i86Win32jdk

• If you are using a Windows 64-bit architecture:

set RTI_PERFTEST_ARCH=x64Win64jdk

• If you are using the Linux i86Linux2.6gcc4.3.4jdk architecture:

setenv RTI_PERFTEST_ARCH i86Linux2.6gcc4.3.4jdk

❏ Make sure java is in your path before running the java example run script.

• When using Java on UNIX-based systems with RTI Secure DDS

In addition to the RTI Connext DDS libraries, you also need to add the OpenSSL
libraries in $OPENSSLHOME/<debug or release>/lib to LD_LIBRARY_PATH.

• When using Java or C# on Windows systems with RTI Secure DDS

In addition to the RTI Connext DDS libraries, you also need to add the OpenSSL
libraries in $OPENSSLHOME/<debug or release>/bin to PATH.

❏ The test uses an XML configuration file. It locates this file based on its path relative to the
directory from which the test is run. To use this configuration file:

• Change to the top-level rtiperftest.<version> directory. For example:

cd /opt/rti/rtiperftest.5.x.y

• Start the test applications. You can start the publisher or subscribers first, the
order does not matter. When selecting your optional parameters, choose parame-
ters that allow the test to run for at least 5 seconds to get any kind of meaningful
results. The longer it runs, the more accurate the results will be. Ideally, you should
run the test for at least 1 minute.
9

Test Parameters
C++ (Traditional API):

 bin/<architecture>/Release/perftest_cpp <-pub|-sub> [parameters]
 or

 bin/<architecture>/Debug/perftest_cpp <-pub|-sub> [parameters]

C++ (Modern API):

 bin/<architecture>/Release/perftest_cpp2 <-pub|-sub> [parameters]
 or

 bin/<architecture>/Debug/perftest_cpp2 <-pub|-sub> [parameters]

C#:

 bin/<architecture>/Release/perftest_cs <-pub|-sub> [parameters]
 or

 bin/<architecture>/Debug/perftest_cs <-pub|-sub> [parameters]

Java:

 scripts/perftest_java <-pub|-sub> [parameters]

where <architecture> depends on your architecture, such as i86Linux2.6gcc4.3.4 or
i86Win32VS2008.

❏ After the publisher recognizes that the specified number of subscribers (see the
 -numSubscribers <count> option) are online and the subscriber recognizes that the spec-
ified number of publishers (see the -numPublishers <count> option) are online, the test
begins.

8 Test Parameters
Several parameters are available; you can enter them on the command line.

All parameters are optional and case-insensitive; partial matches are allowed (such as -h instead
of -help).

Some parameters only make sense in the publishing or subscribing application. The parameters
are presented in the following tables, based on whether they may be used in a publishing appli-
cation, a subscribing application, or both:

❏ Test Parameters for Publishing and Subscribing Applications (Table 8.1) on Page 11

❏ Test Parameters Only for Publishing Applications (Table 8.2) on Page 14

❏ Test Parameters Only for Subscribing Applications (Table 8.3) on Page 15

❏ Test Parameters to Control RTI Secure DDS Options (Publishing and Subscribing Appli-
cations) (Table 8.4) on Page 16

As you will see in the tables, the -pub parameter specifies a publishing application and
-sub specifies a subscribing application. If you do not specify -pub or -sub, -sub is assumed.

For additional information on setting the parameters, see:

❏ Spinning vs. Sleeping (Section 8.1)

❏ Send-Queue Size and Queue-Full Behavior (Section 8.2)

❏ Number of Iterations vs. Latency Count (Section 8.3)
10

Test Parameters
❏ Warming Up (Section 8.4)

❏ WaitSet Event Count and Delay (Section 8.5)

❏ How to Measure Latency for a Given Throughput (Section 8.6)

❏ How to Measure Latency for a Given Throughput (Section 8.6)

Table 8.1 Test Parameters for Publishing and Subscribing Applications

Command-Line Option Description

-bestEffort

Use best-effort communication.
Default: false (use reliable communication)
For an introduction to the RTI reliability model, see the Strict
Reliability design pattern in the RTI Connext DDS Core Libraries Getting
Started Guide. See also: Reliable Communications in the RTI Connext DDS
Core Libraries User’s Manual.

-dataLen <bytes>

Length of payload in bytes for each send.
Default: 100 bytes
Range: 28 - 63,000 bytes
The lower limit is the number of "overhead" bytes in the message (i.e.,
the timestamp, sequence number, and other meta-data used by the
test); the upper limit ensures that, when the overhead of the wire
protocol is added, it doesn't overflow the UDP maximum datagram
size of 64KB.
If -scan is specified, this value is ignored.

-debug

Run in debug mode (generates more verbose logging messages, which
are useful to RTI support personnel).

Default: false

-durability <0|1|2|3>

Sets the Durability kind:
• 0 - VOLATILE (default)
• 1 - TRANSIENT LOCAL
• 2 - TRANSIENT
• 3 - PERSISTENT

For an introduction to the RTI durability model, see the Historical
Data design pattern in the RTI Connext DDS Core Libraries Getting
Started Guide. See also: Mechanisms for Achieving Information Durability
and Persistence, Chapter 12, in the RTI Connext DDS Core Libraries
User’s Manual.

-domain <ID>

Domain ID.
The publisher and subscriber applications must use the same domain
ID in order to communicate.
Default: 1
Range: 0-99
See Choosing a Domain ID and Creating Multiple Domains, Section 8.3.4,
in the RTI Connext DDS Core Libraries User’s Manual.

-enableSharedMemory
Enable the shared memory transport.
Default: shared memory transport is disabled

-enableTcpOnly

Disable all the other transports and use only TCP transport for com-
munication.
Default: TCP transport not enabled

-help Print this usage message and exit.
11

Test Parameters
-instanceHashBuckets <n>

Number of hash buckets for instances.
Default: -1 (means same as the number of instances)

Range: (actual value) > 0

-instances <int>

Set the number of instances to use in the test. The publishing and sub-
scribing applications must specify the same number of instances.
This option only makes sense when testing a keyed data type; to do
so, use -keyed.
Default: 1

Range: > 0

-keepDurationUsec <usec>

Minimum duration that a sample is queued for ACK-disabled read-
ers. Only used if -noPositiveAcks is specified on the publisher side.
See Disabling Positive Acknowledgements, Section 6.5.3.3 in the RTI
Connext DDS Core Libraries User’s Manual.

Default: 1,000 µsec (1 millisec)
Range: >= 0

-keyed
Specify the use of a keyed type.
Default: Unkeyed type.

-multicast
Use multicast to receive data.
Default: do not use multicast.

-multicastAddress
<address>

Specify the multicast receive address for receiving user data.
If unspecified, the following default values will be used according to
the topic:

• latency: 239.255.1.2
• throughput: 239.255.1.1
• announcement: 239.255.1.100

-nic <ipaddr>

Restrict RTI Connext DDS to sending output through this interface.
This can be the IP address of any available network interface on the
machine.
By default, RTI Connext DDS will attempt to contact all possible
subscribing nodes on all available network interfaces. Even on a
multi-NIC machine, the performance over one NIC vs. another may
be different (e.g., Gbit vs. 100 Mbit), so choosing the correct NIC is
critical for a proper test.

-noDirectCommunication

Indicates if the subscribing application will receive samples from the
publishing application when RTI Persistence Service is used.
Only applies when -durability <0|1|2|3> is TRANSIENT (2) or
PERSISTENT (3).

If set to true (the default), the subscribing application gets samples
from the publishing application and RTI Persistence Service. This mode
provides low latency between endpoints.

If set to false, the subscribing application only gets samples from RTI
Persistence Service. This brokered communication pattern provides a
way to guarantee eventual consistency.

Default: true (direct communication)

Table 8.1 Test Parameters for Publishing and Subscribing Applications

Command-Line Option Description
12

Test Parameters
-nomulticast

Do not use multicast.
Note: Starting in 5.1.0, this option is no longer needed since multicast
is disabled by default. It exists only to maintain backward
compatibility.

Default: do not use multicast

-noPositiveAcks

Disable use of positive ACKs in the reliable protocol.
Default: true (use positive ACKs)
See -qosprofile <filename> option for more information.

-noPrintIntervals

Prevent printing of statistics at intervals during the test.
By default, statistics are printed every second in the subscribing appli-
cation, and after receiving every latency echo in the publishing appli-
cation.

-qosprofile <filename>

Path to the XML file containing DDS QoS profiles.
Default: perftest.xml
The default file contains these QoS profiles:

• The ‘ThroughputQos’, ‘LatencyQos’, and ‘AnnouncementQos’
profiles are used by default.

• The ‘NoAckThroughputQos’ and ‘NoAckLatencyQos’ profiles
are used if you specify -noPositiveAcks.

Note: some QoS values are ‘hard-coded’ in the application, therefore
setting them in the XML file has no effect; see the Note: on Page 17.

See comments in perftest.xml, as well as Configuring QoS with XML,
Chapter 17 in the RTI Connext DDS Core Libraries User’s Manual.

-useReadThread

Use a separate thread (instead of a callback) to read data.
See WaitSet Event Count and Delay (Section 8.5)
Default: use callback for subscriber

-waitsetDelayUsec <usec>

Process incoming data in groups, based on time, rather than individu-
ally.
Only used if the -useReadThread option is specified on the subscriber
side.
See WaitSet Event Count and Delay (Section 8.5).
Default: 100
Range: >= 0

-waitsetEventCount
<count>

Process incoming data in groups, based on the number of samples,
rather than individually.
Only used if the -useReadThread option is specified on the subscriber
side.
See WaitSet Event Count and Delay (Section 8.5).
Default: 5
Range: >= 1

Table 8.1 Test Parameters for Publishing and Subscribing Applications

Command-Line Option Description
13

Test Parameters
Table 8.2 Test Parameters Only for Publishing Applications

Command-Line Option Description

-batchSize <bytes>

Enable batching and set the maximum batched message size.
Default: 0, batching disabled
Range: 1 to 63,000
For more information on batching data for high throughput, see the High
Throughput design pattern in the RTI Connext DDS Core Libraries Getting
Started Guide. See also: How to Measure Latency for a Given Throughput
(Section 8.6) and the BATCH QosPolicy, Section 6.5.2 in the RTI Connext
DDS Core Libraries Getting User’s Manual.

-enableAutoThrottle

Enables the Auto Throttling feature. See Auto Tuning and Turbo Mode
(Section 8.7).
Default: feature is disabled.

-enableTurboMode

Enables the Turbo Mode feature. See Auto Tuning and Turbo Mode (Sec-
tion 8.7). When turbo mode is enabled, -batchSize <bytes> is ignored.
Default: feature is disabled.

-executionTime <sec>
Allows you to limit the test duration by specifying the number of seconds
to run the test.

-heartbeatPeriod
<sec>:<nanosec>

The period at which the publishing application will send heartbeats.
See Reliable Communications, Chapter 10, in the RTI Connext DDS Core
Libraries Getting User’s Manual.

Default: heartbeat period sec = 0, heartbeat period nanosec = 0 (meaning
use the value as specified in the XML QoS Profile, which is set to (10
millisec = 10,000,000 nanosec)). See
-qosprofile <filename>.

Range: (actual value) 1 nanosec to 1 year (31,536,000 sec.)

-fastHeartbeatPeriod
<sec>:<nanosec>

An alternative heartbeat period used when the publishing application
needs to flush unacknowledged samples more quickly.
See Reliable Communications, Chapter 10, in the RTI Connext DDS Core
Libraries Getting User’s Manual.

Default: heartbeat period sec = 0, heartbeat period nanosec = 0 (meaning
use the value as specified in the XML QoS Profile, which is set to (1 milli-
sec = 1,000,000 nanosec)). See
-qosprofile <filename>.
Range: (actual value) 1 nanosec to 1 year (31,536,000 sec). Must not be
slower than -heartbeatPeriod <sec>:<nanosec>.

-latencyCount <count>

Number samples to send before a latency ping packet is sent.
See Number of Iterations vs. Latency Count (Section 8.3).

Default: -1 (if -latencyTest is not specified, automatically adjust to 10,000;
if -latency Test is specified, automatically adjust to 1).
Range: must be <= -numIter

-latencyTest

Run a latency test consisting of a ping-pong.
The publisher sends a ping, then blocks until it receives a pong from the
subscriber.

Can only be used on a publisher whose pidMultiPubTest = 0
(see -pidMultiPubTest <id>).

Default: false
14

Test Parameters
-numIter <count>

Number of samples to send.
See Number of Iterations vs. Latency Count (Section 8.3) and Warming
Up (Section 8.4)

If you set scan = true, you cannot set this option (see -scan).

Default: 0 (infinite)
Range: latencyCount (adjusted value) or higher (see
-latencyCount <count>)

-numSubscribers <count>

Have the publishing application wait for this number of subscribing
applications to start.
Default: 1

-pidMultiPubTest <id>

Set the ID of the publisher in a multi-publisher test.
Use a unique value for each publisher running on the same host that uses
the same domain ID.
Default: 0
Range: 0 to n-1, inclusive, where n is the number of publishers in a multi-
publisher test.

-pub
Set test to be a publisher.
Default: -sub

-pubRate

Limit the throughput to the specified number of samples per second.
Default: 0 (no limit)

Range: 1 to 10,000,000

-scan

Run test in scan mode, traversing a range of sample data sizes from 32 to
63,000 bytes.
If you set scan = true, you cannot set -numIter <count>.

Default: false (no scan)

-sendQueueSize <number>

Size of the send queue.
When -batchSize <bytes> is used, the size is the number of batches.

See Send-Queue Size and Queue-Full Behavior (Section 8.2).
Default: 50
Range: [1,100 million] or -1 (indicating an unlimited length).

-sleep <millisec>

Time to sleep between each send.
See Spinning vs. Sleeping (Section 8.1).

Default: 0
Range: 0 or higher

-spin <count>

Number of times to run in a spin loop between each send.
See Spinning vs. Sleeping (Section 8.1).

Default: 0
Range: 0 or higher

Table 8.3 Test Parameters Only for Subscribing Applications

Command-Line Option Description

-numPublishers <count>

The subscribing application will wait for this number of publishing
applications to start.
Default: 1

Table 8.2 Test Parameters Only for Publishing Applications

Command-Line Option Description
15

Test Parameters
8.1 Spinning vs. Sleeping

When the publisher is writing as fast as it can, sooner or later, it is likely to get ahead of the sub-
scriber. There are 4 things you can do in this case:

1. Nothing—for reliable communication, write() will block until the subscriber(s) catch up.

-sidMultiSubTest <id>

ID of the subscriber in a multi-subscriber test.
Use a unique value for each subscriber running on the same host that uses
the same domain ID.
Default: 0
Range: 0 to n-1, inclusive, where n is the number of subscribers in a multi-
subscriber test.

-sub
Set test to be a subscriber.
Default: -sub

Table 8.4 Test Parameters to Control RTI Secure DDS Options (Publishing and Subscribing
Applications)

Command-Line Option Description

-secureEncryptDiscovery
Encrypt discovery traffic.
Default: Not set.

-secureSign
Sign discovery and user data packages.
Default: Not set.

-secureEncryptData
Encrypt at the user data level.
Default: Not set.

-secureEncryptSM
Encrypt at the RTPS sub-message level.
Default: Not set.

-secureGovernanceFile <file>

Governance file. If specified, the authentication, signing, and encryption
arguments are ignored. The governance document configuration will be
used instead.

Default: Not set.

-securePermissionsFile <file>

Permissions file to be used.

Default for Publisher: ./resource/secure/
signed_PerftestPermissionsPub.xml

Default for Subscriber: ./resource/secure/
signed_PerftestPermissionsSub.xml

-secureCertAuthority <file>

Certificate authority file to be used.

Default for Publisher: ./resource/secure/pub.pem

Default for Subscriber: ./resource/secure/sub.pem

-secureCertFile <file>
Certificate file to be used.

Default: ./resource/secure/cacert.pem

-securePrivateKey <file>

Private key file to be used.

Default for Publisher: ./resource/secure/pubkey.pem

Default for Subscriber: ./resource/secure/subkey.pem

Table 8.3 Test Parameters Only for Subscribing Applications

Command-Line Option Description
16

Test Parameters
2. Slow the writing down by sleeping (-sleep <millisec>). This approach is friendlier to the
other processes on the host because it does not monopolize the CPU. However, context
switching is expensive enough that you can't actually "sleep" for amounts of time on the
order of microseconds, so you could end up sleeping too long and hurting performance.
(Operating systems (including Linux and Windows) have a minimum resolution for
sleeping; i.e., you can only sleep for a period of 1 or 10 ms. If you specify a sleep period
that is less than that minimum, the OS may sleep for its minimum resolution.)

3. Spin in a tight loop between writes (-spin <count>). This approach will add a pause with-
out giving up the CPU, making it easier to "sleep" for very short periods of time. In the
test implementation, there is a very short loop that just performs some simple math to
take up CPU time. The argument to -spin <count> (any number >= 0) is the number of
times to go through that loop. The default is 0. If you specify something else, it should be
a fairly large number (100’s or 1000’s), since spinning the loop just a few times will take
negligible time. Avoid spinning on a single-core machine, as the code that would break
you out of the spin may not be able to execute in a timely manner.

4. Let the publisher automatically adjust the writing rate (-enableAutoThrottle). This option
enables the Auto Throttle feature introduced in RTI Connext DDS 5.1.0 and its usage is
preferred over -spin <count> because the amount of spin is automatically determined by
the publisher based on the number of unacknowledged samples in the send queue.

See also: Send-Queue Size and Queue-Full Behavior (Section 8.2).

8.2 Send-Queue Size and Queue-Full Behavior

In many distributed systems, a data producer will often outperform data consumers. That
means that, if the communications are to be reliable, the producer must be throttled in some way
to allow the consumers to keep up. In some situations, this may not be a problem, because data
may simply not be ready for publication at a rate sufficient to overwhelm the subscribers. If
you're not so lucky, your publisher's queue of unacknowledged data will eventually fill up.
When that happens, if data is not to be lost, the publication will have to block until space
becomes available. Blocking can cost you in terms of latency.

To avoid the cost of blocking, consider the following:

❏ Enlarge your publisher's queue (-sendQueueSize <number>). Doing so will mean your
publisher has to block less often. However, it may also let the publisher get even further
ahead of slower subscribers, increasing the number of dropped and resent packets, hurt-
ing throughput. Experimenting with the send queue size is one of the easy things you
can do to squeeze a little more throughput from your system.

❏ Enable Auto Throttling (-enableAutoThrottle). This option enables the Auto Throttle fea-
ture introduced in RTI Connext DDS 5.1.0. When this option is used, the publisher auto-
matically adjusts the writing rate based on the number of unacknowledged samples in
the send queue to avoid blocking.

Note: The following values in the DataWriterProtocolQosPolicy are ‘hard-coded’ in the applica-
tion, therefore setting these values in the XML QoS profile will have no effect:

❏ rtps_reliable_writer.heartbeats_per_max_samples is set to (sendQueueSize/10)

❏ rtps_reliable_writer.low_watermark is set to (sendQueueSize * 0.10)

❏ rtps_reliable_writer.high_watermark is set to (sendQueueSize * 0.90)

For more information on the send queue size, see the RESOURCE_LIMITS QosPolicy, Section
6.5.20 in the RTI Connext DDS Core Libraries User’s Manual (specifically, the max_samples field).
17

Test Parameters
8.3 Number of Iterations vs. Latency Count

When configuring the total number of samples to send during the test (-numIter <count>) and
the number of samples to send between latency pings (-latencyCount <count>), keep these
things in mind:

❏ Don't send latency pings too often. One of the purposes of the test is to measure the
throughput that the middleware is able to achieve. Although the total throughput is tech-
nically the total data sent on both the throughput and latency topics, for the sake of sim-
plicity, the test measures only the former. The implicit assumption is that the latter is
negligible by comparison. If you violate this assumption, your throughput test results
will not be meaningful.

❏ Keep the number of iterations large enough to send many latency pings over the course
of the test run. (That is, keep -numIter <count> small compared to -latencyCount
<count>.) Your latency measurements, and the spread between them, will be of higher
quality if you are able to measure more data points.

❏ When selecting -numIter <count>, choose a value that allows the test to run for at least a
minute to get accurate results. Set -numIter <count> to be millions for small message
sizes (<1k); reduce as needed for larger sizes (otherwise the tests will take longer and lon-
ger to complete).

8.4 Warming Up

When running the performance test in Java, and to a lesser extent, C#, you may observe that
throughput slowly increases through the first few incremental measurements and then levels
off. This improvement reflects the background activity of the just-in-time (JIT) compiler and
optimizer on these platforms. For the best indication of steady-state performance, be sure to run
the test for a number of samples (-numIter <count>) sufficient to smooth out this start-up arti-
fact.

8.5 WaitSet Event Count and Delay

RTI Connext DDS, and by extension, this performance test, gives you the option to either process
received data in the middleware's receive thread, via a listener callback, or in a separate thread (-
useReadThread) via an object called a WaitSet. The latter approach can be beneficial in that it
decouples the operation of your application from the middleware, so that your processing will
not interfere with Connext DDS's internal activities. However, it does introduce additional con-
text switches into your data receive path. When data is arriving at a high rate, these context
switches can adversely impact performance when they occur with each data sample.

To improve efficiency, the command line parameters -waitsetDelayUsec <usec> and -waitsetE-
ventCount <count> allow you to process incoming data in groups, based on the number of sam-
ples and/or time, rather than individually, reducing the number of context switches.
Experiment with these values to optimize performance for your system.

For more information, see these sections in the RTI Connext DDS Core Libraries User’s Manual:
Receive Threads (Section 19.3) and Conditions and WaitSets (Section 4.6).

8.6 How to Measure Latency for a Given Throughput

If you want to measure the minimum latency for a given throughput, you have to use the com-
mand-line parameters -sleep <millisec>, -spin <count> and -batchSize <bytes> to experimen-
tally set the throughput level for a given test run.

For example, suppose you want to generate a graph of latency vs. throughput for a packet size
of 200 bytes and throughput rates of 1000, 10K, 20K, 50K, 100K, 500K, and Max messages per
second.
18

Test Parameters
For throughput rates under 1000 messages per second, use -sleep <ms> to throttle the publish-
ing application. For example, ‘-sleep 1’ will produce a throughput of approximately 1000 mes-
sages/second; ‘-sleep 2’ will produce a throughput of approximately 500 messages/second.

For throughput rates higher than 1000 messages per second, use -spin <spin count> to cause the
publishing application to busy wait between sends. The <spin count> value needed to produce
a given throughput must be experimentally determined and is highly dependent on processor
performance. For example ‘-spin 19000’ may produce a message rate of 10000 messages/second
with a slow processor but a rate of 14000 messages/second with a faster processor.

Use batching when you want to measure latency for throughput rates higher than the maximum
rates of sending individual messages. First, determine the maximum throughput rate for the
data size under test without batching (omit -batchSize <bytes>). For example, on a 1-Gigabyte
network, for a data size of 200 bytes, the maximum throughput will be about 70,000 messages/
sec. We will refer to this value as max_no_batch.

For all throughput rates less than max_no_batch (e.g., 70,000 messages/sec.), do not use batching,
as this will increase the latency.

Use batching to test for throughput rates higher than max_no_batch: start by setting -batchSize to
a multiple of the data size. For example, if the data size is 200 bytes, use -batchSize 400 (this will
put 2 messages in each batch), -batchSize 800 (4 per batch), etc. This will allow you to get
throughput/latency results for throughputs higher than the max_no_batch throughput rate, such
as:

❏ 100,000

❏ 200,000

❏ 500,000

❏ millions

Note: For larger data sizes (8000 bytes and higher), batching often does not improve throughput,
at least for 1-Gigabyte networks.

8.7 Auto Tuning and Turbo Mode

RTI Connext DDS 5.1.0 includes two features that allow the middleware to auto-tune the com-
munications to achieve better performance. These features are Auto Throttling and Turbo Mode.
For more information about both features, refer to Sections 10.4, Auto Throttling for DataWriter
Performance—Experimental Feature and 6.5.2.4 Turbo Mode: Automatically Adjusting the Number of
Bytes in a Batch—Experimental Feature in the RTI Connext DDS Core Libraries User's Manual. The
performance test application includes two command-line options to enable these features: -
enableAutoThrottle and -enableTurboMode.

With Auto Throttling, the publisher automatically adjusts the writing rate based on the number
of unacknowledged samples in the send queue to avoid blocking and provide the best latency/
throughput tradeoff.

With Turbo Mode, the size of a batch is automatically adjusted to provide the best latency for a
given write rate. For slow write rates, the batch size will be smaller to minimize the latency pen-
alty. For high write rates, the batch size will be bigger to increase throughput. When turbo mode
is used, the command line option -batchSize <bytes> is ignored.

To achieve the best latency under maximum throughput conditions, use -enableAutoThrottle
and -enableTurboMode in combination.
19

Example Command Lines for Running the Performance Test
9 Example Command Lines for Running the Performance Test
The followings are examples of how to run the performance test for different use cases.

❏ The tests below print final results only; if you want to see intermediate values, remove
the -noprint argument from the command line.

❏ If you are running on 2 unequal machines, i.e., one machine is faster (has better proces-
sors) than another, you will see better performance by running the Publisher on the slower
machine.

❏ To measure CPU usage while running these tests, use "top" or a similar utility.

9.1 1-1, Multicast, Best Latency as a Function of Message Size

Publisher:

bin/<arch>/Release/perftest_cpp -pub -noPrint -nic <ipaddr> -domain <ID>
-numIter <count> -latencyCount 1 -dataLen <length> -latencyTest
-multicast

Subscriber:

bin/<arch>/Release/perftest_cpp -sub -noPrint -nic <ipaddr> -domain <ID>
-multicast

❏ Modify -dataLen <bytes> to see latencies for different data sizes.

❏ Set -numIter <count> to be >=100 for statistically better results.

9.2 1-1, Multicast, Maximum Throughput as a Function of Message Size (with
Batching)

Publisher:

bin/<arch>/Release/perftest_cpp -pub -noPrint -nic <ipaddr>
-numIter <count> -dataLen <length> -batchSize <bytes>
-sendQueueSize <number> -multicast

Subscriber:

bin/<arch>/Release/perftest_cpp -sub -noprint -nic <ipaddr> -multicast

❏ Set -numIter <count> to be millions for small message sizes (<1k); reduce as needed for
larger sizes (otherwise the tests will take longer and longer to complete).

❏ To achieve maximum throughput, start by setting -batchSize <bytes> to 6400, then
increase the size to see if you get better throughput.

The largest valid batch size is 63000 bytes.

❏ For maximum throughput, start by setting -sendQueueSize <number> to 30; the best
value will usually be between 30-50.

Note: For larger data sizes (8000 bytes and higher), batching often does not improve throughput,
at least for 1-Gig networks.
20

Example Command Lines for Running the Performance Test
9.3 1-1, Multicast, Latency vs. Throughput for 200-byte Messages (with Batching)

Publisher:

bin/<arch>/Release/perftest_cpp -pub -noPrint -nic <ipaddr>
-numIter <count> -dataLen 200 -batchSize <bytes>
-sendQueueSize <number> -spin <count> -multicast

Subscriber:

bin/<arch>/Release/perftest_cpp -sub -noPrint -nic <ipaddr> -multicast

❏ Set -numIter <count> to be in the millions for high throughput tests; reduce as needed
for lower throughputs (otherwise the tests will take longer and longer to complete).

❏ To adjust throughput, experiment with the value of -spin <count>. For example, to get a
rate of 10,000 messages/sec, use ‘-spin 20000’ to see the resulting rate, then adjust up or
down as needed.

9.4 1-to-1, Multicast, Reliable UDPv4, All Sizes

Publisher:

bin/<arch>/Release/perftest_cpp -pub -noPrint -sendQueueSize 32
-latencyCount 10000 -scan -multicast

Subscriber:

bin/<arch>/Release/perftest_cpp -sub -noPrint -multicast

9.5 1-to-1, Unicast, Best-Effort, UDPv4, 1 Size

Publisher:

bin/<arch>/Release/perftest_cpp -pub -noPrint -sendQueueSize 32
-latencyCount 1000 -numIter 1000000 -dataLen 1024 -bestEffort

Subscriber:

bin/<arch>/Release/perftest_cpp -sub -noPrint -dataLen 1024 -bestEffort

9.6 1-to-1, Multicast, Reliable, UDPv4, Batching Enabled

Publisher:

bin/<arch>/Release/perftest_cpp -pub -noPrint -sendQueueSize 32
-latencyCount 1000 -numIter 1000000 -dataLen 200 -batchSize 6400
-multicast

Subscriber:

bin/<arch>/Release/perftest_cpp -sub -noPrint -dataLen 200
-batchSize 6400 -multicast

9.7 1-to-2, Multicast, Reliable, UDPv4

Publisher:

bin/<arch>/Release/perftest_cpp -pub -noPrint -pidMultiPubTest 0
-sendQueueSize 32 -numSubscribers 2 -latencyCount 1000
-numIter 1000000 -dataLen 200 -multicast

Subscriber 1:

bin/<arch>/Release/perftest_cpp -sub -noPrint -dataLen 200
-numPublishers 1 -sidMultiSubTest 0 -multicast
21

Example Output
Subscriber 2:

bin/<arch>/Release/perftest_cpp -sub -noPrint -dataLen 200
-numPublishers 1 -sidMultiSubTest 1 -multicast

9.8 2-to-1, Multicast, Reliable, UDPv4

Publisher 1:

bin/<arch>/Release/perftest_cpp -pub -noPrint -pidMultiPubTest 0
-sendQueueSize 32 -numSubscribers 1 -latencyCount 1000
-numIter 1000000 -dataLen 200 -multicast

Publisher 2:

bin/<arch>/Release/perftest_cpp -pub -noPrint -pidMultiPubTest 1
-sendQueueSize 32 -numSubscribers 1 -latencyCount 1000
-numIter 1000000 -dataLen 200 -multicast

Subscriber:

bin/<arch>/Release/perftest_cpp -sub -noPrint -dataLen 200
-numPublishers 2 -sidMultiSubTest 0 -multicast

9.9 1-to-1, Unicast, Reliable, UDPv4, Using Security: Signing Packages, Encrypting
Data

Publisher:

bin/<arch>/Release/perftest_cpp -pub -noPrint -dataLen 63000 -secureSign -
secureEncryptData -executionTime 30

Subscriber:

bin/<arch>/Release/perftest_cpp -sub -noPrint -dataLen 63000 -secureSign -
secureEncryptData

10 Example Output
The following is an example of the expected output from the performance test.

Publisher:

perftest_cpp -pub -noPrint -domain 27 -sendQueueSize 50 -latencyCount 10000 -scan
Waiting to discover 1 subscribers...
Waiting for subscribers announcement ...
Publishing data...
Length: 32 Latency: Ave 396 us Std 48.9 us Min 83 us Max 538 us 50% 401 us 90% 459 us
99% 510 us 99.99% 538 us 99.9999% 538 us
Length: 64 Latency: Ave 399 us Std 53.1 us Min 88 us Max 1062 us 50% 403 us 90% 461 us
99% 537 us 99.99% 1062 us 99.9999% 1062 us
...

Subscriber:

bin/i86Linux2.6gcc3.4.3/Release/perftest_cpp -sub -noPrint -domain 27
Waiting to discover 1 publishers ...
Waiting for data...
Length: 32 Packets: 10000000 Packets/s(ave): 47913 Mbps(ave): 12.3 Lost: 0
Length: 64 Packets: 10000000 Packets/s(ave): 47580 Mbps(ave): 24.4 Lost: 0
...
22

Secure Certificates, Governance and Permission Files
11 Secure Certificates, Governance and Permission Files
The performance test provides a set of already generated certificates, governance and permis-
sion files to be loaded when using the RTI Secure DDS plugin. Both governance files and permis-
sion files are already signed, so no action is required by the user. These files are located in
$(RTIPERFTESTHOME)/resource/certificates.

In addition to the already signed governance and permission files, the original files are also pro-
vided (not signed) as well as a bash script with the steps to generate all the signed files. Those
files can be found in $(RTIPERFTESTHOME)/resource/certificates/input; the script is in $(RTI-
PERFTESTHOME)/resource/certificates/make.sh.

12 Optimizing Your OS for Network Performance
The network stacks of popular operating systems are not always tuned for maximum perfor-
mance out of the box. RTI has found that the following configuration changes frequently
improve performance for a broad set of demanding applications. Consider testing your network
performance with and without these changes to learn if they can benefit your system.

12.1 Optimizing Linux Systems

Edit the file, /etc/sysctl.conf, and add the following:

net.core.wmem_max = 16777216
net.core.wmem_default = 16777216
net.core.rmem_max = 16777216
net.core.rmem_default = 16777216
net.ipv4.tcp_rmem = 4096 16777216 33554432
net.ipv4.tcp_wmem = 4096 16777216 33554432
net.ipv4.tcp_mem = 4096 16777216 33554432
run /sbin/sysctl -p

12.2 Optimizing Windows Systems

1. From the Start button, select Run..., then enter:

regedit
2. Change this entry: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\

Services\Tcpip\Parameters

a. Add the DWORD key: MaximumReassemblyHeaders

b. Set the value to 0xffff (this is the max value)

See http://support.microsoft.com/kb/811003 for more information.

3. Change this entry: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Services\AFD\Parameters

a. Add the DWORD key: FastSendDatagramThreshold

b. Set the value to 65536 (0x10000)

See http://support.microsoft.com/kb/235257 for more information.

4. Reboot your machine for the changes to take effect.
23

http://support.microsoft.com/kb/811003
http://support.microsoft.com/kb/235257

	1 Supported Platforms
	2 Release Notes
	2.1 What’s New in 5.2.4
	2.1.1 Added Security Plugin Compatibility
	2.1.2 New Platforms
	2.1.3 Improved Way to Measure Elapsed Intervals

	2.2 Previous Releases
	2.2.1 What’s New in 5.2.0
	2.2.1.1 New Platforms
	2.2.1.2 Removed Platforms
	2.2.1.3 New Command-Line Options
	2.2.1.4 Added Support for Modern API C++ Implementation
	2.2.1.5 Added 99.9999 Percentile in Latency Report
	2.2.1.6 C++ Implementations (Traditional and Modern API) Now use High Precision Clock to Measure Time
	2.2.1.7 Removed .ini Configuration File

	2.2.2 What’s Fixed in 5.2.0
	2.2.2.1 Degraded Performance when Using Turbo Mode
	2.2.2.2 Potential Segmentation Fault due to Invalid Message ID

	2.3 Known Issues
	2.3.1 Do Not Use Security Options when Testing RTI Connext DDS 5.2.3 or Earlier
	2.3.2 Static Linking on Windows Systems for C++ APIs Requires Manual Changes to Solution

	3 Overview
	4 Download Instructions
	5 Installation Instructions
	5.1 UNIX-Based Systems
	5.2 Windows Systems

	6 Building the Application
	7 Starting the Test
	8 Test Parameters
	8.1 Spinning vs. Sleeping
	8.2 Send-Queue Size and Queue-Full Behavior
	8.3 Number of Iterations vs. Latency Count
	8.4 Warming Up
	8.5 WaitSet Event Count and Delay
	8.6 How to Measure Latency for a Given Throughput
	8.7 Auto Tuning and Turbo Mode

	9 Example Command Lines for Running the Performance Test
	9.1 1-1, Multicast, Best Latency as a Function of Message Size
	9.2 1-1, Multicast, Maximum Throughput as a Function of Message Size (with Batching)
	9.3 1-1, Multicast, Latency vs. Throughput for 200-byte Messages (with Batching)
	9.4 1-to-1, Multicast, Reliable UDPv4, All Sizes
	9.5 1-to-1, Unicast, Best-Effort, UDPv4, 1 Size
	9.6 1-to-1, Multicast, Reliable, UDPv4, Batching Enabled
	9.7 1-to-2, Multicast, Reliable, UDPv4
	9.8 2-to-1, Multicast, Reliable, UDPv4
	9.9 1-to-1, Unicast, Reliable, UDPv4, Using Security: Signing Packages, Encrypting Data

	10 Example Output
	11 Secure Certificates, Governance and Permission Files
	12 Optimizing Your OS for Network Performance
	12.1 Optimizing Linux Systems
	12.2 Optimizing Windows Systems

